Intrepid2 | |
FunctorArrayTools | |
F_clone | Functor for clone see Intrepid2::ArrayTools for more |
F_contractFieldField | Functor to contractFieldField see Intrepid2::ArrayTools for more |
F_contractDataField | Functor to contractDataField see Intrepid2::ArrayTools for more |
F_contractDataData | Functor to contractDataData see Intrepid2::ArrayTools for more |
F_dotMultiply | Functor for dotMultiply see Intrepid2::ArrayTools for more |
F_scalarMultiply | Functor for scalarMultiply see Intrepid2::ArrayTools for more |
F_crossProduct | Functor for crossProduct see Intrepid2::ArrayTools for more |
F_outerProduct | Functor for outerProduct see Intrepid2::ArrayTools for more |
F_matvecProduct | Functor for matvecProduct; new version avoids both subviews and branching. See Intrepid2::ArrayTools for more |
F_matmatProduct | Functor for matmatProduct see Intrepid2::ArrayTools for more |
FunctorCellTools | |
F_getSubcvCoords_Polygon2D | Functor for calculation of sub-control volume coordinates on polygons see Intrepid2::CellTools for more |
F_getSubcvCoords_Hexahedron | Functor for calculation of sub-control volume coordinates on hexahedra see Intrepid2::CellTools for more |
F_getSubcvCoords_Tetrahedron | Functor for calculation of sub-control volume coordinates on tetrahedra see Intrepid2::CellTools for more |
F_setJacobian | Functor for calculation of Jacobian on cell workset see Intrepid2::CellTools for more |
F_refEdgeTangent | |
F_refFaceTangents | |
F_edgeNormalsFromTangents | |
F_mapToPhysicalFrame | Functor for mapping reference points to physical frame see Intrepid2::CellTools for more |
F_mapReferenceSubcell | |
F_mapReferenceSubcellBatch | |
FunctorFunctionSpaceTools | |
F_negativeWeighted2dInputCrossK | |
F_weighedInput | |
F_computeCellMeasure | Functor for calculation of cell measure, see Intrepid2::FunctionSpaceTools for more |
F_applyLeftFieldSigns | Functor for applyLeftFieldSigns, see Intrepid2::FunctionSpaceTools for more |
F_applyRightFieldSigns | Functor for applyRightFieldSigns, see Intrepid2::FunctionSpaceTools for more |
F_applyFieldSigns | Functor for applyFieldSigns, see Intrepid2::FunctionSpaceTools for more |
F_evaluate | Functor to evaluate functions, see Intrepid2::FunctionSpaceTools for more |
FunctorRealSpaceTools | |
F_extractScalarValues | Functor for extractScalarValues see Intrepid2::RealSpaceTools for more |
F_clone | Functor for clone see Intrepid2::RealSpaceTools for more |
F_absval | Functor to compute absolute value see Intrepid2::RealSpaceTools for more |
F_vectorNorm | Functor to compute vector norm see Intrepid2::RealSpaceTools for more |
F_transpose | Functor to compute transpose see Intrepid2::RealSpaceTools for more |
F_inverse | Functor to compute inverse see Intrepid2::RealSpaceTools for more |
F_det | Functor to compute determinant see Intrepid2::RealSpaceTools for more |
F_add | Functor to add md arrays see Intrepid2::RealSpaceTools for more |
F_subtract | Functor to subtract md arrays see Intrepid2::RealSpaceTools for more |
F_scale | Functor to scale md arrays see Intrepid2::RealSpaceTools for more |
F_dot | Functor to compute dot product see Intrepid2::RealSpaceTools for more |
F_matvec | Functor to compute matvec see Intrepid2::RealSpaceTools for more |
F_AtA | Functor to compute matvec see Intrepid2::RealSpaceTools for more |
F_vecprod | Functor to compute vecprod see Intrepid2::RealSpaceTools for more |
FunctorsLagrangianTools | |
computeDofCoords | |
FunctorsProjectionTools | |
ComputeWBasisEdge_HCurl | |
ComputeBasisCoeffsOnEdges_HCurl | |
ComputeBasisCoeffsOnFaces_HCurl | |
ComputeBasisCoeffsOnCell_HCurl | |
ComputeWBasisSide_HDiv | |
ComputeBasisCoeffsOnSides_HDiv | |
ComputeBasisCoeffsOnCells_HDiv | |
ComputeHCurlBasisCoeffsOnCells_HDiv | |
ComputeBasisCoeffsOnVertices_HGRAD | |
ComputeBasisCoeffsOnEdges_HGRAD | |
ComputeBasisCoeffsOnFaces_HGRAD | |
ComputeBasisCoeffsOnCells_HGRAD | |
ComputeBasisCoeffsOnVertices_L2 | |
ComputeBasisCoeffsOnEdges_L2 | |
ComputeBasisCoeffsOnFaces_L2 | |
ComputeBasisCoeffsOnCells_L2 | |
MultiplyBasisByWeights | |
Impl | |
CellGeometryHostMembers | Store host-only "members" of CellGeometry using a static map indexed on the CellGeometry pointer. This allows us to avoid issues related to non-CUDA-aware members with a lambda capture of a CellGeometry object |
CellMeasureFunctor | Functor for full (C,P) Jacobian determinant container. CUDA compiler issues led us to avoid lambdas for this one |
CellTools | See Intrepid2::CellTools |
Serial | |
Line | |
Line< 2 > | Line topology, 2 nodes |
Line< 3 > | Line topology, 3 nodes |
Triangle | |
Triangle< 3 > | Triangle topology, 3 nodes |
Triangle< 4 > | Triangle topology, 4 nodes |
Triangle< 6 > | Triangle topology, 6 nodes |
Quadrilateral | |
Quadrilateral< 4 > | Quadrilateral topology, 4 nodes |
Quadrilateral< 8 > | Quadrilateral topology, 8 nodes |
Quadrilateral< 9 > | Quadrilateral topology, 9 nodes |
Tetrahedron | |
Tetrahedron< 4 > | Tetrahedron topology, 4 nodes |
Tetrahedron< 8 > | Tetrahedron topology, 8 nodes |
Tetrahedron< 10 > | Tetrahedron topology, 10 nodes |
Tetrahedron< 11 > | Tetrahedron topology, 11 nodes |
Hexahedron | |
Hexahedron< 8 > | Hexahedron topology, 8 nodes |
Hexahedron< 20 > | Hexahedron topology, 20 nodes |
Hexahedron< 27 > | Hexahedron topology, 27 nodes |
Pyramid | |
Pyramid< 5 > | Pyramid topology, 5 nodes |
Pyramid< 13 > | Pyramid topology, 13 nodes |
Pyramid< 14 > | Pyramid topology, 14 nodes |
Wedge | |
Wedge< 6 > | Wedge topology, 6 nodes |
Wedge< 15 > | Wedge topology, 15 nodes |
Wedge< 18 > | Wedge topology, 18 nodes |
Basis_HCURL_HEX_I1_FEM | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
Functor | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
Serial | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
Basis_HCURL_HEX_In_FEM | See Intrepid2::Basis_HCURL_HEX_In_FEM |
Functor | See Intrepid2::Basis_HCURL_HEX_In_FEM |
Serial | See Intrepid2::Basis_HCURL_HEX_In_FEM |
Basis_HCURL_QUAD_I1_FEM | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
Functor | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
Serial | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
Basis_HCURL_QUAD_In_FEM | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
Functor | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
Serial | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
Basis_HCURL_TET_I1_FEM | See Intrepid2::Basis_HCURL_TET_I1_FEM |
Functor | See Intrepid2::Basis_HCURL_TET_I1_FEM |
Serial | See Intrepid2::Basis_HCURL_TET_I1_FEM |
Basis_HCURL_TET_In_FEM | See Intrepid2::Basis_HCURL_TET_In_FEM |
Functor | See Intrepid2::Basis_HCURL_TET_In_FEM |
Serial | See Intrepid2::Basis_HCURL_TET_In_FEM |
Basis_HCURL_TRI_I1_FEM | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
Functor | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
Serial | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
Basis_HCURL_TRI_In_FEM | See Intrepid2::Basis_HCURL_TRI_In_FEM |
Functor | See Intrepid2::Basis_HCURL_TRI_In_FEM |
Serial | See Intrepid2::Basis_HCURL_TRI_In_FEM |
Basis_HCURL_WEDGE_I1_FEM | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
Functor | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
Serial | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
Basis_HDIV_HEX_I1_FEM | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
Functor | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
Serial | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
Basis_HDIV_HEX_In_FEM | See Intrepid2::Basis_HDIV_HEX_In_FEM |
Functor | See Intrepid2::Basis_HDIV_HEX_In_FEM |
Serial | See Intrepid2::Basis_HDIV_HEX_In_FEM |
Basis_HDIV_QUAD_I1_FEM | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
Functor | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
Serial | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
Basis_HDIV_QUAD_In_FEM | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
Functor | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
Serial | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
Basis_HDIV_TET_I1_FEM | See Intrepid2::Basis_HDIV_TET_I1_FEM |
Functor | See Intrepid2::Basis_HDIV_TET_I1_FEM |
Serial | See Intrepid2::Basis_HDIV_TET_I1_FEM |
Basis_HDIV_TET_In_FEM | See Intrepid2::Basis_HDIV_TET_In_FEM |
Functor | See Intrepid2::Basis_HDIV_TET_In_FEM |
Serial | See Intrepid2::Basis_HDIV_TET_In_FEM |
Basis_HDIV_TRI_I1_FEM | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
Functor | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
Serial | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
Basis_HDIV_TRI_In_FEM | See Intrepid2::Basis_HDIV_TRI_In_FEM |
Functor | See Intrepid2::Basis_HDIV_TRI_In_FEM |
Serial | See Intrepid2::Basis_HDIV_TRI_In_FEM |
Basis_HDIV_WEDGE_I1_FEM | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
Functor | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
Serial | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
Basis_HGRAD_HEX_C1_FEM | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
Basis_HGRAD_HEX_DEG2_FEM | See Intrepid2::Basis_HGRAD_HEX_DEG2_FEM |
Functor | See Intrepid2::Basis_HGRAD_HEX_DEG2_FEM |
Serial | See Intrepid2::Basis_HGRAD_HEX_DEG2_FEM |
Basis_HGRAD_HEX_Cn_FEM | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
Functor | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
Serial | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
Basis_HGRAD_LINE_C1_FEM | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
Basis_HGRAD_LINE_C2_FEM | See Intrepid2::Basis_HGRAD_LINE_C2_FEM |
Functor | See Intrepid2::Basis_HGRAD_LINE_C2_FEM |
Serial | See Intrepid2::Basis_HGRAD_LINE_C2_FEM |
Basis_HGRAD_LINE_Cn_FEM | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
Functor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
Serial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
Basis_HGRAD_LINE_Cn_FEM_JACOBI | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
Functor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
Serial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
Basis_HGRAD_PYR_C1_FEM | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
Basis_HGRAD_PYR_I2_FEM | See Intrepid2::Basis_HGRAD_PYR_I2_FEM |
Functor | See Intrepid2::Basis_HGRAD_PYR_I2_FEM |
Serial | See Intrepid2::Basis_HGRAD_PYR_I2_FEM |
Basis_HGRAD_QUAD_C1_FEM | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
Basis_HGRAD_QUAD_DEG2_FEM | See Intrepid2::Basis_HGRAD_QUAD_DEG2_FEM |
Functor | See Intrepid2::Basis_HGRAD_QUAD_DEG2_FEM |
Serial | See Intrepid2::Basis_HGRAD_QUAD_DEG2_FEM |
Basis_HGRAD_QUAD_Cn_FEM | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
Functor | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
Serial | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
Basis_HGRAD_TET_C1_FEM | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
Basis_HGRAD_TET_C2_FEM | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
Functor | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
Serial | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
Basis_HGRAD_TET_Cn_FEM | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
Functor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
Serial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
OrthPolynomialTet | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
OrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
OrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
Basis_HGRAD_TET_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
Functor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
Serial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
Basis_HGRAD_TET_COMP12_FEM | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
Functor | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
Serial | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
Basis_HGRAD_TRI_C1_FEM | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
Basis_HGRAD_TRI_C2_FEM | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
Functor | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
Serial | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
Basis_HGRAD_TRI_Cn_FEM | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
Functor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
Serial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
OrthPolynomialTri | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
OrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
OrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
Basis_HGRAD_TRI_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
Functor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
Serial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
Basis_HGRAD_WEDGE_C1_FEM | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
Functor | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
Serial | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
Basis_HGRAD_WEDGE_DEG2_FEM | See Intrepid2::Basis_HGRAD_WEDGE_DEG2_FEM |
Functor | See Intrepid2::Basis_HGRAD_WEDGE_DEG2_FEM |
Serial | See Intrepid2::Basis_HGRAD_WEDGE_DEG2_FEM |
Basis_HVOL_C0_FEM | See Intrepid2::Basis_HVOL_C0_FEM |
Functor | See Intrepid2::Basis_HVOL_C0_FEM |
Serial | See Intrepid2::Basis_HVOL_C0_FEM |
Basis_HVOL_HEX_Cn_FEM | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
Functor | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
Serial | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
Basis_HVOL_LINE_Cn_FEM | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
Functor | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
Serial | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
Basis_HVOL_QUAD_Cn_FEM | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
Functor | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
Serial | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
Basis_HVOL_TET_Cn_FEM | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
Functor | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
Serial | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
Basis_HVOL_TRI_Cn_FEM | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
Functor | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
Serial | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
F_Integrate | Implementation of a general sum factorization algorithm, abstracted from the algorithm described by Mora and Demkowicz, for integration. Uses hierarchical parallelism |
F_IntegratePointValueCache | Implementation of a general sum factorization algorithm, using a novel approach developed by Roberts, for integration. Uses hierarchical parallelism |
F_RefSpaceIntegral | |
OrientationTools | Tools to compute orientations for degrees-of-freedom |
Kernels | |
Serial | |
RefSubcellParametrization | This class defines the parametrizations of edges and faces of supported reference cells. The parametrization mappings are stored in static Kokkos views. The class is templated on the Kokkos::Device Type which is used to determine layout and memory space of the views |
RefCellNodes | This class defines the coordinates of the nodes of reference cells according for supported cell topologies. The node coordinates are stored in static views. The class is templated on the Kokkos::Device Type which is used to determine layout and memory space of the views |
ReferenceNodeDataStatic | Reference node containers for each supported topology |
RefCellCenter | This class defines the coordinates of the barycenter of the supported reference cells. The barycenter coordinates are stored in static views. The class is templated on the Kokkos::Device Type which is used to determine layout and memory space of the views |
ReferenceCenterDataStatic | |
ReferenceNodeDataStatic | Reference node containers for each supported topology |
PointInclusion | This class implements a check function that determines whether a given point is inside or outside the reference cell for a specific topology. The class has a template argument for the key of the shards topology |
PointInclusion< shards::Line<>::key > | Line topology |
PointInclusion< shards::Triangle<>::key > | Triangle topology |
PointInclusion< shards::Quadrilateral<>::key > | Quadrilateral topology |
PointInclusion< shards::Tetrahedron<>::key > | Tetrahedron topology |
PointInclusion< shards::Hexahedron<>::key > | Hexahedron topology |
PointInclusion< shards::Pyramid<>::key > | Pyramid topology |
PointInclusion< shards::Wedge<>::key > | Wedge topology |
CellGeometry | CellGeometry provides the nodes for a set of cells; has options that support efficient definition of uniform grids as well as options for arbitrary geometry, including curvilinear |
CellTools | A stateless class for operations on cell data. Provides methods for: |
checkPointInclusionFunctor | |
ProjectedGeometry | Allows generation of geometry degrees of freedom based on a provided map from straight-edged mesh domain to curvilinear mesh domain |
ProjectedGeometryIdentityMap | Identity map; simply preserves linear geometry. Intended primarily for tests |
UnitSquareToCircle | Maps unit square [-1,1]x[-1,1] to circle of radius 1 |
UnitCubeToSphere | Maps unit cube [-1,1]x[-1,1]x[-1,1] to sphere of radius 1 |
TensorTopologyMap | For two cell topologies whose tensor product is a third, this class establishes a mapping from subcell pairs in the component topologies to the tensor product topology |
Basis | An abstract base class that defines interface for concrete basis implementations for Finite Element (FEM) and Finite Volume/Finite Difference (FVD) discrete spaces |
BasisValues | The data containers in Intrepid2 that support sum factorization and other reduced-data optimizations distinguish between scalar-valued data that is a simple product of elements in tensor components, and vector-valued data that is made up of a series of such products |
Basis_Derived_HCURL_Family1_HEX | |
Basis_Derived_HCURL_Family2_HEX | |
Basis_Derived_HCURL_Family3_HEX | |
Basis_Derived_HCURL_Family1_Family2_HEX | |
Basis_Derived_HCURL_HEX | |
Basis_Derived_HCURL_Family1_QUAD | |
Basis_Derived_HCURL_Family2_QUAD | |
Basis_Derived_HCURL_QUAD | |
Basis_Derived_HCURL_Family1_WEDGE | |
Basis_Derived_HCURL_Family2_WEDGE | |
Basis_Derived_HCURL_WEDGE | |
Basis_Derived_HDIV_Family1_HEX | |
Basis_Derived_HDIV_Family2_HEX | |
Basis_Derived_HDIV_Family3_HEX | |
Basis_Derived_HDIV_Family3_Family1_HEX | |
Basis_Derived_HDIV_HEX | |
Basis_Derived_HDIV_Family1_QUAD | |
Basis_Derived_HDIV_Family2_QUAD | |
Basis_Derived_HDIV_QUAD | |
Basis_Derived_HDIV_Family1_WEDGE | |
Basis_Derived_HDIV_Family2_WEDGE | |
Basis_Derived_HDIV_WEDGE | |
Basis_Derived_HGRAD_HEX | |
Basis_Derived_HGRAD_QUAD | |
Basis_Derived_HGRAD_WEDGE | |
Basis_Derived_HVOL_HEX | Implementation of H(vol) basis on the quadrilateral that is templated on H(vol) on the line |
Basis_Derived_HVOL_QUAD | Implementation of H(vol) basis on the quadrilateral that is templated on H(vol) on the line |
Basis_Derived_HVOL_WEDGE | |
EmptyBasisFamily | EmptyBasisFamily allows us to set a default void family for a given topology |
DerivedBasisFamily | A family of basis functions, constructed from H(vol) and H(grad) bases on the line |
Basis_DirectSumBasis | A basis that is the direct sum of two other bases |
Basis_HCURL_HEX_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Hexahedron cell |
Basis_HCURL_HEX_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Hexahedron cell |
Basis_HCURL_QUAD_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Quadrilateral cell |
Basis_HCURL_QUAD_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Quadrilateral cell |
Basis_HCURL_TET_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Tetrahedron cell |
Basis_HCURL_TET_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Tetrahedron cell |
Basis_HCURL_TRI_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Triangle cell |
Basis_HCURL_TRI_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Triangle cell |
Basis_HCURL_WEDGE_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Wedge cell |
Basis_HDIV_HEX_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedron cell |
Serial | |
Basis_HDIV_HEX_In_FEM | Implementation of the default H(div)-compatible FEM basis on Hexahedron cell |
Basis_HDIV_QUAD_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell |
Basis_HDIV_QUAD_In_FEM | Implementation of the default H(div)-compatible FEM basis on Quadrilateral cell |
Basis_HDIV_TET_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Tetrahedron cell |
Basis_HDIV_TET_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Tetrahedral cells |
Basis_HDIV_TRI_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Triangle cell |
Basis_HDIV_TRI_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Triangle cell |
Basis_HDIV_WEDGE_I1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
Basis_HGRAD_HEX_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Hexahedron cell |
Basis_HGRAD_HEX_DEG2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
Basis_HGRAD_HEX_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
Basis_HGRAD_LINE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Line cell |
Basis_HGRAD_LINE_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Line cell |
Basis_HGRAD_LINE_Cn_FEM | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
Basis_HGRAD_LINE_Cn_FEM_JACOBI | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Jacobi polynomials |
Basis_HGRAD_PYR_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Pyramid cell |
Basis_HGRAD_PYR_I2_FEM | Implementation of an H(grad)-compatible FEM basis of degree 2 on a Pyramid cell |
Basis_HGRAD_QUAD_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Quadrilateral cell |
Basis_HGRAD_QUAD_DEG2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Quadrilateral cell |
Basis_HGRAD_QUAD_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points |
Basis_HGRAD_TET_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Tetrahedron cell |
Basis_HGRAD_TET_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
Basis_HGRAD_TET_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
Basis_HGRAD_TET_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis of arbitrary degree on tetrahedron |
Basis_HGRAD_TET_COMP12_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
Basis_HGRAD_TRI_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Triangle cell |
Basis_HGRAD_TRI_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Triangle cell |
Basis_HGRAD_TRI_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Triangle cell |
Basis_HGRAD_TRI_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis (Dubiner) of arbitrary degree on triangle |
Basis_HGRAD_WEDGE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
Basis_HGRAD_WEDGE_DEG2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Wedge cell |
Hierarchical_HCURL_TET_Functor | Functor for computing values for the HierarchicalBasis_HCURL_TET class |
HierarchicalBasis_HCURL_TET | For mathematical details of the construction, see: |
Hierarchical_HCURL_TRI_Functor | Functor for computing values for the HierarchicalBasis_HCURL_TRI class |
HierarchicalBasis_HCURL_TRI | For mathematical details of the construction, see: |
Hierarchical_HDIV_PYR_Functor | Functor for computing values for the HierarchicalBasis_HDIV_PYR class |
HierarchicalBasis_HDIV_PYR | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
Hierarchical_HDIV_TET_Functor | Functor for computing values for the HierarchicalBasis_HDIV_TET class |
HierarchicalBasis_HDIV_TET | For mathematical details of the construction, see: |
HierarchicalBasis_HDIV_TRI | For mathematical details of the construction, see: |
dummyBasis | |
HierarchicalTriangleBasisFamily | |
HierarchicalTetrahedronBasisFamily | |
HierarchicalPyramidBasisFamily | |
Basis_HVOL_C0_FEM | Implementation of the default HVOL-compatible FEM contstant basis on triangle, quadrilateral, hexahedron and tetrahedron cells |
Basis_HVOL_HEX_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Hexahedron cell |
Basis_HVOL_LINE_Cn_FEM | Implementation of the locally HVOL-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
Basis_HVOL_QUAD_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points. The degrees of freedom are point evaluation at points in the interior of the Quadrilateral |
Basis_HVOL_TET_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
Basis_HVOL_TRI_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Triangle cell |
Hierarchical_HGRAD_LINE_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_LINE class |
IntegratedLegendreBasis_HGRAD_LINE | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
Hierarchical_HGRAD_PYR_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_PYR class |
IntegratedLegendreBasis_HGRAD_PYR | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
Hierarchical_HGRAD_TET_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TET class |
IntegratedLegendreBasis_HGRAD_TET | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
Hierarchical_HGRAD_TRI_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TRI class |
IntegratedLegendreBasis_HGRAD_TRI | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line: extension to triangle using Jacobi blending functions |
Hierarchical_HVOL_LINE_Functor | Functor for computing values for the LegendreBasis_HVOL_LINE class |
LegendreBasis_HVOL_LINE | Basis defining Legendre basis on the line, a polynomial subspace of L^2 (a.k.a. H(vol)) on the line |
Hierarchical_HVOL_PYR_Functor | Functor for computing values for the LegendreBasis_HVOL_PYR class |
LegendreBasis_HVOL_PYR | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
Hierarchical_HVOL_TET_Functor | Functor for computing values for the LegendreBasis_HVOL_TET class |
LegendreBasis_HVOL_TET | Basis defining Legendre basis on the line, a polynomial subspace of H(vol) on the line: extension to tetrahedron using Jacobi blending functions |
Hierarchical_HVOL_TRI_Functor | Functor for computing values for the LegendreBasis_HVOL_TRI class |
LegendreBasis_HVOL_TRI | Basis defining Legendre basis on the line, a polynomial subspace of H(vol) on the line: extension to triangle using Jacobi blending function |
NodalTriangleBasisFamily | |
NodalTetrahedronBasisFamily | |
NodalBasisFamily | A family of nodal basis functions representing the higher-order Lagrangian basis family that Intrepid2 has historically supported |
SerendipityBasis | Serendipity Basis, defined as the sub-basis of a provided basis, consisting of basis elements for which tensorial component polynomial orders satisfy the Serendipity criterion |
SerendipityBasisWrapper | Helper class that allows SerendipityBasis construction with poly order arguments that are passed to the tensor-basis constructor. (SerendipityBasis itself requires a BasisPtr at construction.) |
DerivedSerendipityBasisFamily | |
Basis_TensorBasis | Basis defined as the tensor product of two component bases |
OperatorTensorDecomposition | For a multi-component tensor basis, specifies the operators to be applied to the components to produce the composite operator on the tensor basis |
TensorViewFunctor | Functor for computing values for the TensorBasis class |
TensorBasis3_Functor | Functor for computing values for the TensorBasis3 class |
Basis_TensorBasis3 | |
FunctionSpaceTools | Defines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities |
Cubature | Defines the base class for cubature (integration) rules in Intrepid |
CubatureControlVolume | Defines cubature (integration) rules over control volumes |
Functor | |
CubatureControlVolumeBoundary | Defines cubature (integration) rules over Neumann boundaries for control volume method |
Functor | |
CubatureControlVolumeSide | Defines cubature (integration) rules over control volumes |
Functor | |
CubatureDirect | Defines direct cubature (integration) rules in Intrepid |
CubatureData | Cubature data is defined on exec space and deep-copied when an object is created |
CubatureDataStatic | Cubature data is defined on the host space and is static |
CubatureDirectLineGauss | Defines Gauss integration rules on a line |
CubatureDirectLineGaussJacobi20 | Defines GaussJacobi20 integration rules on a line used for Pyramid only |
CubatureDirectTetDefault | Defines direct integration rules on a tetrahedron |
CubatureDirectTetSymmetric | Defines direct integration rules on a tetrahedron. These quadrature rules are symmetric (invariant under orientation mappings) and the quadrature weights are all positive. Reference: Jan Jaskowiec, Natarajan Sukumar, High order symmetric cubature rules for tetrahedra and pyramids, International Journal of Numerical Methods in Engineering, Volume 122, Number 1, pages 148-171, 2021 |
CubatureDirectTriDefault | Defines direct integration rules on a triangle |
CubatureDirectTriSymmetric | |
CubaturePolylib | Utilizes cubature (integration) rules contained in the library Polylib (Spencer Sherwin, Aeronautics, Imperial College London) within Intrepid |
CubatureTensor | Defines tensor-product cubature (integration) rules in Intrepid |
CubatureTensorPyr | Defines tensor-product cubature (integration) rules in Intrepid |
Functor | |
DefaultCubatureFactory | A factory class that generates specific instances of cubatures |
IntegrationTools | Provides support for structure-aware integration |
Orientation | Orientation encoding and decoding |
OrientationTools | Tools to compute orientations for degrees-of-freedom |
F_modifyBasisByOrientation | |
LagrangianInterpolation | A class providing static members to perform Lagrangian interpolation on a finite element |
LagrangianTools | A class providing tools for Lagrangian elements as static members |
ProjectionStruct | An helper class to compute the evaluation points and weights needed for performing projections |
ProjectionTools | A class providing static members to perform projection-based interpolations: |
ElemSystem | Class to solve a square system A x = b on each cell A is expected to be saddle a point (KKT) matrix of the form [C B; B^T 0], where C has size nxn and B nxm, with n>0, m>=0. B^T is copied from B, so one does not have to define the B^T portion of A. b will contain the solution x. The first n-entries of x are copied into the provided basis coefficients using the provided indexing. The system is solved either with a QR factorization implemented in KokkosKernels or with Lapack GELS function |
ConstantArgExtractor | Argument extractor class which ignores the input arguments in favor of passing a single 0 argument to the provided container |
FullArgExtractor | Argument extractor class which passes all arguments to the provided container |
SingleArgExtractor | Argument extractor class which passes a single argument, indicated by the template parameter whichArg, to the provided container |
ArrayTools | Utility class that provides methods for higher-order algebraic manipulation of user-defined arrays, such as tensor contractions. For low-order operations, see Intrepid2::RealSpaceTools |
Internal | |
CellTopology | Implements arbitrary-dimensional extrusion of a base shards::CellTopology |
ZeroView | A singleton class for a DynRankView containing exactly one zero entry. (Technically, the entry is DataScalar(), the default value for the scalar type.) This allows View-wrapping classes to return a reference to zero, even when that zero is not explicitly stored in the wrapped views |
Data | Wrapper around a Kokkos::View that allows data that is constant or repeating in various logical dimensions to be stored just once, while providing a similar interface to that of View |
bool_pack | |
InPlaceCombinationFunctor | |
InPlaceCombinationFunctorConstantCase | Functor definition for the constant-data case |
FullArgExtractorWritableData | For use with Data object into which a value will be stored. We use passThroughBlockDiagonalArgs = true for storeInPlaceCombination() |
FullArgExtractorData | For use with Data object into which a value will be stored. We use passThroughBlockDiagonalArgs = true for storeInPlaceCombination() |
DataCombiner | |
DimensionInfo | Struct expressing all variation information about a Data object in a single dimension, including its logical extent and storage extent |
ScalarSumFunctor | |
ScalarDifferenceFunctor | |
ScalarProductFunctor | |
ScalarQuotientFunctor | |
DataTools | |
functor_returns_ref | SFINAE helper to detect whether a functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 0 > | SFINAE helper to detect whether rank-0 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 1 > | SFINAE helper to detect whether rank-1 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 2 > | SFINAE helper to detect whether rank-2 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 3 > | SFINAE helper to detect whether rank-3 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 4 > | SFINAE helper to detect whether rank-4 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 5 > | SFINAE helper to detect whether rank-5 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 6 > | SFINAE helper to detect whether rank-6 functor returns a reference type |
functor_returns_ref< FunctorType, ScalarType, 7 > | SFINAE helper to detect whether rank-7 functor returns a reference type |
FunctorIterator | Essentially, a read-only variant of ViewIterator, for a general functor (extent_int() and rank() support required) |
PointTools | Utility class that provides methods for calculating distributions of points on different cells |
Polylib | Providing orthogonal polynomial calculus and interpolation, created by Spencer Sherwin, Aeronautics, Imperial College London, modified and redistributed by D. Ridzal |
Serial | |
Cubature | Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto zeros and weights |
Derivative | Compute the Derivative Matrix and its transpose associated with the Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto-Jacobi zeros |
InterpolationOperator | Interpolation Operator from Gauss-Jacobi points to an arbitrary distribution at points zm |
LagrangianInterpolant | Compute the value of the i th Lagrangian interpolant through the np Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto points zgj at the arbitrary location z |
RealSpaceTools | Implementation of basic linear algebra functionality in Euclidean space |
Serial | |
TensorArgumentIterator | Allows systematic enumeration of all entries in a TensorData object, tracking indices for each tensor component |
TensorData | View-like interface to tensor data; tensor components are stored separately and multiplied together at access time |
TensorPoints | View-like interface to tensor points; point components are stored separately; the appropriate coordinate is determined from the composite point index and requested dimension at access time |
TensorViewIterator | A helper class that allows iteration over three Kokkos Views simultaneously, according to tensor combination rules: |
TransformedBasisValues | Structure-preserving representation of transformed vector data; reference space values and transformations are stored separately |
Parameters | Define constants |
ScalarTraits | Scalar type traits |
ScalarTraits< float > | Built in support for float |
ScalarTraits< double > | Built in support for double |
ScalarTraits< int > | Built in support for int |
ScalarTraits< long int > | Built in support for long int |
ScalarTraits< long long > | Built in support for long long |
ExecSpace | Space overload |
ExecSpace< ViewSpaceType, void > | Space overload |
DeduceLayout | Layout deduction (temporary meta-function) |
Util | Small utility functions |
has_rank_member | Tests whether a class has a member rank. Used in getFixedRank() method below, which in turn is used in the supports_rank_n helpers |
has_rank_member< T, decltype((void) T::rank, void())> | Tests whether a class has a member rank. Used in getFixedRank() method below, which in turn is used in the supports_rank_n helpers |
supports_rank_1 | SFINAE helper to detect whether a type supports a 1-integral-argument operator() |
two | |
supports_rank_2 | SFINAE helper to detect whether a type supports a 2-integral-argument operator() |
two | |
supports_rank_3 | SFINAE helper to detect whether a type supports a 3-integral-argument operator() |
two | |
supports_rank_4 | SFINAE helper to detect whether a type supports a 4-integral-argument operator() |
two | |
supports_rank_5 | SFINAE helper to detect whether a type supports a 5-integral-argument operator() |
two | |
supports_rank_6 | SFINAE helper to detect whether a type supports a 6-integral-argument operator() |
two | |
supports_rank_7 | SFINAE helper to detect whether a type supports a 7-integral-argument operator() |
two | |
supports_rank | SFINAE helper to detect whether a type supports a rank-integral-argument operator() |
supports_rank< T, 1 > | SFINAE helper to detect whether a type supports a 1-integral-argument operator() |
supports_rank< T, 2 > | SFINAE helper to detect whether a type supports a 2-integral-argument operator() |
supports_rank< T, 3 > | SFINAE helper to detect whether a type supports a 3-integral-argument operator() |
supports_rank< T, 4 > | SFINAE helper to detect whether a type supports a 4-integral-argument operator() |
supports_rank< T, 5 > | SFINAE helper to detect whether a type supports a 5-integral-argument operator() |
supports_rank< T, 6 > | SFINAE helper to detect whether a type supports a 6-integral-argument operator() |
supports_rank< T, 7 > | SFINAE helper to detect whether a type supports a 7-integral-argument operator() |
RankExpander | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 0 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 1 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 2 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 3 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 4 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 5 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 6 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
RankExpander< Scalar, 7 > | Helper to get Scalar[*+] where the number of *'s matches the given rank |
has_rank_method | Tests whether a class implements rank(). Used in getFunctorRank() method below; allows us to do one thing for View and another for DynRankView and our custom Functor types |
two | |
NaturalLayoutForType | Define layout that will allow us to wrap Sacado Scalar objects in Views without copying |
DeviceDeleter | Struct for deleting device instantiation |
VectorData | Reference-space field values for a basis, designed to support typical vector-valued bases |
ViewIterator | A helper class that allows iteration over some part of a Kokkos View, while allowing the calling code to remain agnostic as to the rank of the view |
HierarchicalBasisFamily | A family of hierarchical basis functions, constructed in a way that follows work by Fuentes et al |
DerivedNodalBasisFamily | A family of nodal basis functions which is related to, but not identical with, the Lagrangian basis family that Intrepid2 has historically supported |
SerendipityBasisFamily | Serendipity basis family constructed in terms of arbitrary bases on the line, triangle, and tetrahedron. (These must be hierarchical bases.) |
DGSerendipityBasisFamily | Serendipity basis family constructed using the DG hierarchical basis family |
CubatureDirectTri | Defines direct integration rules on a triangle. These quadrature rules are symmetric (invariant under orientation mappings) and the quadrature weights are all positive. Reference: H. Xiao and Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Computers and Mathematics with Applications, 59 (2009), pp. 663-676 |