Intrepid2
|
Functor for computing values for the HierarchicalBasis_HDIV_PYR class. More...
#include <Intrepid2_HierarchicalBasis_HDIV_PYR.hpp>
Public Member Functions | |
Hierarchical_HDIV_PYR_Functor (EOperator opType, OutputFieldType output, InputPointsType inputPoints, int polyOrder) | |
KOKKOS_INLINE_FUNCTION void | cross (Kokkos::Array< OutputScalar, 3 > &c, const Kokkos::Array< OutputScalar, 3 > &a, const Kokkos::Array< OutputScalar, 3 > &b) const |
cross product: c = a x b | |
KOKKOS_INLINE_FUNCTION void | dot (OutputScalar &c, const Kokkos::Array< OutputScalar, 3 > &a, const Kokkos::Array< OutputScalar, 3 > &b) const |
dot product: c = a b | |
KOKKOS_INLINE_FUNCTION OutputScalar | dot (const Kokkos::Array< OutputScalar, 3 > &a, const Kokkos::Array< OutputScalar, 3 > &b) const |
KOKKOS_INLINE_FUNCTION void | E_E (Kokkos::Array< OutputScalar, 3 > &EE, const ordinal_type &i, const OutputScratchView &PHom, const PointScalar &s0, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s0_grad, const Kokkos::Array< PointScalar, 3 > &s1_grad) const |
KOKKOS_INLINE_FUNCTION void | E_E_CURL (Kokkos::Array< OutputScalar, 3 > &curl_EE, const ordinal_type &i, const OutputScratchView &PHom, const PointScalar &s0, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s0_grad, const Kokkos::Array< PointScalar, 3 > &s1_grad) const |
KOKKOS_INLINE_FUNCTION void | V_QUAD (Kokkos::Array< OutputScalar, 3 > &VQUAD, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &PHom_s, const PointScalar &s0, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s0_grad, const Kokkos::Array< PointScalar, 3 > &s1_grad, const OutputScratchView &PHom_t, const PointScalar &t0, const PointScalar &t1, const Kokkos::Array< PointScalar, 3 > &t0_grad, const Kokkos::Array< PointScalar, 3 > &t1_grad) const |
KOKKOS_INLINE_FUNCTION void | E_QUAD (Kokkos::Array< OutputScalar, 3 > &EQUAD, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &HomPi_s01, const PointScalar &s0, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s0_grad, const Kokkos::Array< PointScalar, 3 > &s1_grad, const OutputScratchView &HomLi_t01) const |
KOKKOS_INLINE_FUNCTION void | E_QUAD_CURL (Kokkos::Array< OutputScalar, 3 > &EQUAD_CURL, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &HomPi_s01, const PointScalar &s0, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s0_grad, const Kokkos::Array< PointScalar, 3 > &s1_grad, const OutputScratchView &HomPj_t01, const OutputScratchView &HomLj_t01, const OutputScratchView &HomLj_dt_t01, const Kokkos::Array< PointScalar, 3 > &t0_grad, const Kokkos::Array< PointScalar, 3 > &t1_grad) const |
KOKKOS_INLINE_FUNCTION void | V_LEFT_TRI (Kokkos::Array< OutputScalar, 3 > &VLEFTTRI, const OutputScalar &phi_i, const Kokkos::Array< OutputScalar, 3 > &phi_i_grad, const OutputScalar &phi_j, const Kokkos::Array< OutputScalar, 3 > &phi_j_grad, const OutputScalar &t0, const Kokkos::Array< OutputScalar, 3 > &t0_grad) const |
See Fuentes et al. (p. 455), definition of V_{ij}^{}. | |
KOKKOS_INLINE_FUNCTION void | V_RIGHT_TRI (Kokkos::Array< OutputScalar, 3 > &VRIGHTTRI, const OutputScalar &mu1, const Kokkos::Array< OutputScalar, 3 > &mu1_grad, const OutputScalar &phi_i, const Kokkos::Array< OutputScalar, 3 > &phi_i_grad, const OutputScalar &t0, const Kokkos::Array< OutputScalar, 3 > &t0_grad) const |
See Fuentes et al. (p. 455), definition of V_{ij}^{}. | |
KOKKOS_INLINE_FUNCTION void | V_TRI (Kokkos::Array< OutputScalar, 3 > &VTRI, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &P, const OutputScratchView &P_2ip1, const Kokkos::Array< PointScalar, 3 > &vectorWeight) const |
KOKKOS_INLINE_FUNCTION void | V_TRI_DIV (OutputScalar &VTRI_DIV, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &P, const OutputScratchView &P_2ip1, const OutputScalar &divWeight) const |
KOKKOS_INLINE_FUNCTION void | V_TRI_B42 (Kokkos::Array< OutputScalar, 3 > &VTRI_mus0_mus1_s2_over_mu, const Kokkos::Array< OutputScalar, 3 > &VTRI_00_s0_s1_s2, const Kokkos::Array< OutputScalar, 3 > &EE_0_s0_s1, const OutputScalar &s2, const OutputScalar &mu, const Kokkos::Array< OutputScalar, 3 > &mu_grad, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &P_mus0_mus1, const OutputScratchView &P_2ip1_mus0pmus1_s2) const |
See Equation (B.42) in Fuentes et al. Computes 1/mu V^{tri}_ij(mu s0, mu s1, s2). | |
KOKKOS_INLINE_FUNCTION void | V_TRI_B42_DIV (OutputScalar &div_VTRI_mus0_mus1_s2_over_mu, const Kokkos::Array< OutputScalar, 3 > &VTRI_00_s0_s1_s2, const Kokkos::Array< OutputScalar, 3 > &EE_0_s0_s1, const OutputScalar &s2, const Kokkos::Array< OutputScalar, 3 > &s2_grad, const OutputScalar &mu, const Kokkos::Array< OutputScalar, 3 > &mu_grad, const ordinal_type &i, const ordinal_type &j, const OutputScratchView &P_mus0_mus1, const OutputScratchView &P_2ip1_mus0pmus1_s2) const |
See Equation (B.42) in Fuentes et al. Computes 1/mu V^{tri}_ij(mu s0, mu s1, s2). | |
KOKKOS_INLINE_FUNCTION void | computeFaceVectorWeight (Kokkos::Array< OutputScalar, 3 > &vectorWeight, const PointScalar &s0, const Kokkos::Array< PointScalar, 3 > &s0Grad, const PointScalar &s1, const Kokkos::Array< PointScalar, 3 > &s1Grad, const PointScalar &s2, const Kokkos::Array< PointScalar, 3 > &s2Grad) const |
KOKKOS_INLINE_FUNCTION void | computeFaceDivWeight (OutputScalar &divWeight, const Kokkos::Array< PointScalar, 3 > &s0Grad, const Kokkos::Array< PointScalar, 3 > &s1Grad, const Kokkos::Array< PointScalar, 3 > &s2Grad) const |
KOKKOS_INLINE_FUNCTION void | computeGradHomLi (Kokkos::Array< OutputScalar, 3 > &HomLi_grad, const ordinal_type i, const OutputScratchView &HomPi_s0s1, const OutputScratchView &HomLi_dt_s0s1, const Kokkos::Array< PointScalar, 3 > &s0Grad, const Kokkos::Array< PointScalar, 3 > &s1Grad) const |
KOKKOS_INLINE_FUNCTION void | operator() (const TeamMember &teamMember) const |
size_t | team_shmem_size (int team_size) const |
Functor for computing values for the HierarchicalBasis_HDIV_PYR class.
This functor is not intended for use outside of HierarchicalBasis_HDIV_PYR.
Definition at line 47 of file Intrepid2_HierarchicalBasis_HDIV_PYR.hpp.
|
inline |
The "quadrilateral face" H(curl) functions defined by Fuentes et al., Appendix E.2., p. 432 Here, HomPi_s01, HomLi_t01 are the homogenized Legendre polynomials [P](s0,s1) and homogenized integrated Legendre polynomials [L](t0,t1), given in Appendix E.1, p. 430
Definition at line 197 of file Intrepid2_HierarchicalBasis_HDIV_PYR.hpp.
|
inline |
The "quadrilateral face" H(div) functions defined by Fuentes et al., Appendix E.2., p. 433 Here, PHom are the homogenized Legendre polynomials [P](s0,s1) and [P](t0,t1), given in Appendix E.1, p. 430
Definition at line 174 of file Intrepid2_HierarchicalBasis_HDIV_PYR.hpp.