Intrepid
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
oCIntrepid::AdaptiveSparseGrid< Scalar, UserVector >Builds general adaptive sparse grid rules (Gerstner and Griebel) using the 1D cubature rules in the Intrepid::CubatureLineSorted class
oCIntrepid::AdaptiveSparseGridInterface< Scalar, UserVector >
oCIntrepid::ArrayToolsUtility class that provides methods for higher-order algebraic manipulation of user-defined arrays, such as tensor contractions. For low-order operations, see Intrepid::RealSpaceTools
oCArrayWrapper< Scalar, ArrayType, ArrayRank, isconstant >
oCArrayWrapper< Scalar, ArrayType, 1, false >
oCArrayWrapper< Scalar, ArrayType, 1, true >
oCArrayWrapper< Scalar, ArrayType, 2, false >
oCArrayWrapper< Scalar, ArrayType, 2, true >
oCArrayWrapper< Scalar, ArrayType, 3, false >
oCArrayWrapper< Scalar, ArrayType, 3, true >
oCArrayWrapper< Scalar, ArrayType, 4, false >
oCArrayWrapper< Scalar, ArrayType, 4, true >
oCArrayWrapper< Scalar, ArrayType, 5, false >
oCArrayWrapper< Scalar, ArrayType, 5, true >
oCArrayWrapper< Scalar, ArrayType, 6, false >
oCArrayWrapper< Scalar, ArrayType, 6, true >
oCArrayWrapper< Scalar, ArrayType, 7, false >
oCArrayWrapper< Scalar, ArrayType, 7, true >
oCArrayWrapper< Scalar, ArrayType, 8, false >
oCArrayWrapper< Scalar, ArrayType, 8, true >
oCArrayWrapper< Scalar, ArrayType,-1, false >
oCArrayWrapper< Scalar, ArrayType,-1, true >
oCIntrepid::Basis< Scalar, ArrayScalar >An abstract base class that defines interface for concrete basis implementations for Finite Element (FEM) and Finite Volume/Finite Difference (FVD) discrete spaces
oCIntrepid::Basis< Scalar, Intrepid::FieldContainer< Scalar > >
oCIntrepid::CellTools< Scalar >A stateless class for operations on cell data. Provides methods for:
oCCheckType< A >
oCIntrepid::ArrayTools::cloneFields2< ArrayOutFields, ArrayInFields, Layout, MemorySpace, invalRank, outvalRank >
oCIntrepid::Cubature< Scalar, ArrayPoint, ArrayWeight >Defines the base class for cubature (integration) rules in Intrepid
oCIntrepid::CubatureTemplateTemplate for the cubature rules used by Intrepid. Cubature template consists of cubature points and cubature weights. Intrepid provides a collection of cubature templates for most standard cell topologies. The templates are defined in reference coordinates using a standard reference cell for each canonical cell type. Cubature points are always specified by a triple of (X,Y,Z) coordinates even if the cell dimension is less than 3. The unused dimensions should be padded by zeroes
oCIntrepid::DefaultCubatureFactory< Scalar, ArrayPoint, ArrayWeight >A factory class that generates specific instances of cubatures
oCIntrepid::RealSpaceTools< Scalar >::detTempSpec< ArrayDet, ArrayIn, matRank >
oCIntrepid::DofCoordsInterface< ArrayScalar >This is an interface class for bases whose degrees of freedom can be associated with spatial locations in a reference element (typically interpolation points for interpolatory bases)
oCIntrepid::FieldContainer< Scalar, ArrayTypeId >Implementation of a templated lexicographical container for a multi-indexed scalar quantity. FieldContainer object stores a multi-indexed scalar value using the lexicographical index ordering: the rightmost index changes first and the leftmost index changes last. FieldContainer can be viewed as a dynamic multidimensional array whose values can be accessed in two ways: by their multi-index or by their enumeration, using an overloaded [] operator. The enumeration of a value gives the sequential order of the multi-indexed value in the container. The number of indices, i.e., the rank of the container is unlimited. For containers with ranks up to 5 many of the methods are optimized for faster execution. An overloaded () operator is also provided for such low-rank containers to allow element access by multi-index without having to create an auxiliary array for the multi-index
oCIntrepid::FieldContainer< double >
oCIntrepid::FieldContainer< Scalar >
oCIntrepid::FunctionSpaceToolsDefines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities
oCIntrepid::FunctionSpaceToolsInPlaceDefines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities
oCIntrepid::HGRAD_POLY_C1_FEMImplementation of the default H(grad) compatible FEM basis of degree 1 on a polygon cell
oCIntrepid::FunctionSpaceTools::integrateTempSpec< Scalar, ArrayOut, ArrayInLeft, ArrayInRight, leftrank, outrank >
oCIntrepid::IntrepidBurkardtRulesProviding integration rules, created by John Burkardt, Scientific Computing, Florida State University, modified and redistributed by D. Kouri
oCIntrepid::IntrepidPolylibProviding orthogonal polynomial calculus and interpolation, created by Spencer Sherwin, Aeronautics, Imperial College London, modified and redistributed by D. Ridzal
oCIntrepid::CellTools< Scalar >::mapToPhysicalFrameTempSpec< ArrayPhysPoint, ArrayRefPoint, ArrayCell, refRank, phyptsrank >Computes F, the reference-to-physical frame map
oCIntrepid::ArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, inleftrank, inrankright >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 2, 3 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 2, 4 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 2,-1 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 3, 3 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 3, 4 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 3,-1 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 4, 3 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 4, 4 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 4,-1 >
oCArrayTools::matmatProductDataDataTempSpecLeft< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight,-1,-1 >
oCIntrepid::ArrayTools::matmatProductDataDataTempSpecRight< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, inrightrank >
oCArrayTools::matmatProductDataDataTempSpecRight< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 3 >
oCArrayTools::matmatProductDataDataTempSpecRight< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 4 >
oCArrayTools::matmatProductDataDataTempSpecRight< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight,-1 >
oCIntrepid::OrthgonalBasesBasic implementation of general orthogonal polynomials on a range of shapes, including the triangle, and tetrahedron
oCIntrepid::OrthogonalBases
oCIntrepid::PointToolsUtility class that provides methods for calculating distributions of points on different cells
oCIntrepid::ProductTopologyUtility class that provides methods for calculating distributions of points on different cells
oCRank< A >
oCRankSpec< DataT, leftrank >
oCRankSpec< DataT, 1 >
oCRankSpec< DataT, 2 >
oCRankSpec< DataT, 3 >
oCRankSpec< DataT, 4 >
oCRankSpec< DataT, 5 >
oCRankSpec< DataT, 6 >
oCRankSpec< DataT, 7 >
oCRankSpec< DataT, 8 >
oCRankSpec< DataT,-1 >
oCIntrepid::RealSpaceTools< Scalar >Implementation of basic linear algebra functionality in Euclidean space
oCReturn_Type< A, Scalar >
oCIntrepid::ArrayTools::scalarMultiplyDataData2< ArrayOutData, ArrayInDataLeft, ArrayInDataRight, Layout, MemorySpace, invalRank, outvalRank >There are two use cases: (1) dot product of a rank-3, 4 or 5 container inputFields with dimensions (C,F,P) (C,F,P,D1) or (C,F,P,D1,D2), representing the values of a set of scalar, vector or tensor fields, by the values in a rank-2, 3 or 4 container inputData indexed by (C,P), (C,P,D1), or (C,P,D1,D2) representing the values of scalar, vector or tensor data, OR (2) dot product of a rank-2, 3 or 4 container inputFields with dimensions (F,P), (F,P,D1) or (F,P,D1,D2), representing the values of a scalar, vector or tensor field, by the values in a rank-2 container inputData indexed by (C,P), (C,P,D1) or (C,P,D1,D2), representing the values of scalar, vector or tensor data; the output value container outputFields is indexed by (C,F,P), regardless of which of the two use cases is considered
oCIntrepid::ArrayTools::scalarMultiplyDataField2< ArrayOutFields, ArrayInData, ArrayInFields, Layout, MemorySpace, infieldRank, outfieldRank >
oCIntrepid::CellTools< Scalar >::setJacobianTempSpec< ArrayJac, ArrayPoint, ArrayCell, typecheck >Computes the Jacobian matrix DF of the reference-to-physical frame map F
oCIntrepid::SGNodes< Scalar, D, ArrayPoint, ArrayWeight >
oCIntrepid::SGNodes< Scalar, dimension_ >
oCIntrepid::SGPoint< Scalar, D >
oCStdVector< Scalar >
oCIntrepid::TabulatorTet< Scalar, ArrayScalar, derivOrder >This is an internal class with a static member function for tabulating derivatives of orthogonal expansion functions
oCIntrepid::TabulatorTet< Scalar, ArrayScalar, 0 >This is specialized on 0th derivatives to make the tabulate function run through recurrence relations
oCIntrepid::TabulatorTet< Scalar, ArrayScalar, 1 >This is specialized on 1st derivatives since it recursively calls the 0th derivative class with Sacado AD types, and so the outputValues it passes to that function needs to have a rank 2 rather than rank 3
oCIntrepid::TabulatorTri< Scalar, ArrayScalar, derivOrder >This is an internal class with a static member function for tabulating derivatives of orthogonal expansion functions
oCIntrepid::TabulatorTri< Scalar, ArrayScalar, 0 >This is specialized on 0th derivatives to make the tabulate function run through recurrence relations
oCIntrepid::TabulatorTri< Scalar, ArrayScalar, 1 >This is specialized on 1st derivatives since it recursively calls the 0th derivative class with Sacado AD types, and so the outputValues it passes to that function needs to have a rank 2 rather than rank 3
oCIntrepid::FunctionSpaceTools::tensorMultiplyDataDataTempSpec< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, outvalRank >
oCIntrepid::FunctionSpaceTools::tensorMultiplyDataDataTempSpec< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 3 >
oCIntrepid::FunctionSpaceTools::tensorMultiplyDataDataTempSpec< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight, 4 >
oCIntrepid::FunctionSpaceTools::tensorMultiplyDataDataTempSpec< Scalar, ArrayOutData, ArrayInDataLeft, ArrayInDataRight,-1 >
\CIntrepid::TensorProductSpaceToolsDefines expert-level interfaces for the evaluation, differentiation and integration of finite element-functions defined by tensor products of one-dimensional spaces. These are useful in implementing spectral element methods