|
template<class Scalar , class ScalarArray1 , class ScalarArray2 > |
static void | tabulateTriangle (const ScalarArray1 &z, const int n, ScalarArray2 &poly_val) |
| Calculates triangular orthogonal expansions (e.g. Dubiner basis) at a range of input points. More...
|
|
template<class Scalar , class ScalarArray1 , class ScalarArray2 > |
static void | tabulateTetrahedron (const ScalarArray1 &z, const int n, ScalarArray2 &poly_val) |
| Calculates triangular orthogonal expansions (e.g. Dubiner basis) at a range of input points. More...
|
|
|
template<class Scalar > |
static void | jrc (const Scalar &alpha, const Scalar &beta, const int &n, Scalar &an, Scalar &bn, Scalar &cn) |
| computes Jacobi recurrence coefficients of order n with weights a,b so that P^{alpha,beta}_{n+1}(x) = (an x + bn) P^{alpha,beta}_n(x) - cn P^{alpha,beta}_{n-1}(x)
|
|
static int | idxtri (int p, int q) |
| Given indices p,q, computes the linear index of the Dubiner polynomial D^{p,q}.
|
|
static int | idxtet (int p, int q, int r) |
| Given indices p,q,r, computes the linear index of the tetrahedral polynomial D^{p,q,r}.
|
|
template<class Scalar , class ScalarArray1 , class ScalarArray2 >
void Intrepid::OrthogonalBases::tabulateTetrahedron |
( |
const ScalarArray1 & |
z, |
|
|
const int |
n, |
|
|
ScalarArray2 & |
poly_val |
|
) |
| |
|
static |
Calculates triangular orthogonal expansions (e.g. Dubiner basis) at a range of input points.
- Parameters
-
np | [in] - number of input points |
z | [in] - 2d array of points z(pt,3) |
n | [in] - the maximum polynomial degree tabulated |
poly_val | [out] - 2d array poly_val((n+1)(n+2)(n+3)/6,np) |
- The ScalarArray types must support (i,j) indexing and a dimension(i) operation.
Definition at line 142 of file Intrepid_OrthogonalBasesDef.hpp.
References idxtet(), and jrc().
template<class Scalar , class ScalarArray1 , class ScalarArray2 >
void Intrepid::OrthogonalBases::tabulateTriangle |
( |
const ScalarArray1 & |
z, |
|
|
const int |
n, |
|
|
ScalarArray2 & |
poly_val |
|
) |
| |
|
static |
Calculates triangular orthogonal expansions (e.g. Dubiner basis) at a range of input points.
- Parameters
-
np | [in] - number of input points |
z | [in] - 2d array of points z(pt,2) |
n | [in] - the maximum polynomial degree tabulated |
poly_val | [out] - 2d array poly_val((n+1)(n+2)/2,np) |
- The ScalarArray types must support (i,j) indexing and a dimension(i) operation.
Definition at line 65 of file Intrepid_OrthogonalBasesDef.hpp.
References idxtri(), and jrc().
The documentation for this class was generated from the following files: