ROL
|
Defines the equality constraint operator interface. More...
#include <ROL_EqualityConstraint.hpp>
Public Member Functions | |
virtual | ~EqualityConstraint () |
virtual void | value (Vector< Real > &c, const Vector< Real > &x, Real &tol)=0 |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
virtual void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
EqualityConstraint (void) | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual bool | isFeasible (const Vector< Real > &v) |
Check if the vector, v, is feasible. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Protected Member Functions | |
const std::vector< Real > | getParameter (void) const |
Private Attributes | |
bool | activated_ |
std::vector< Real > | param_ |
Defines the equality constraint operator interface.
ROL's equality constraint interface is designed for Fréchet differentiable operators \(c:\mathcal{X} \rightarrow \mathcal{C}\), where \(\mathcal{X}\) and \(\mathcal{C}\) are Banach spaces. The constraints are of the form
\[ c(x) = 0 \,. \]
The basic operator interface, to be implemented by the user, requires:
It is strongly recommended that the user additionally overload:
The user may also overload:
Definition at line 88 of file ROL_EqualityConstraint.hpp.
|
inlinevirtual |
Definition at line 94 of file ROL_EqualityConstraint.hpp.
|
inline |
Definition at line 273 of file ROL_EqualityConstraint.hpp.
|
pure virtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implemented in ROL::EqualityConstraint_SimOpt< Real >, Normalization_Constraint< Real >, ROL::InteriorPoint::CompositeConstraint< Real >, Normalization_Constraint< Real >, ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::ZOO::EqualityConstraint_SimpleEqConstrained< Real, XPrim, XDual, CPrim, CDual >, ROL::PrimalDualInteriorPointResidual< Real >, ROL::ZOO::InequalityConstraint_HS32< Real >, ROL::PrimalDualInteriorPointResidual< Real >, ROL::ZOO::EqualityConstraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >, ROL::ZOO::EqualityConstraint_HS39b< Real >, ROL::BinaryConstraint< Real >, ROL::ZOO::EqualityConstraint_HS32< Real >, ROL::ZOO::InequalityConstraint_HS29< Real >, ROL::InteriorPoint::PrimalDualResidual< Real >, ROL::InteriorPoint::PrimalDualResidual< Real >, ROL::ZOO::InequalityConstraint_HS24< Real >, ROL::CompositeConstraint< Real >, ROL::ZOO::EqualityConstraint_HS39a< Real >, ROL::ScalarLinearEqualityConstraint< Real >, ROL::LinearEqualityConstraint< Real >, ROL::BoundInequalityConstraint< Real >, ROL::StdEqualityConstraint< Real >, ROL::LowerBoundInequalityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::UpperBoundInequalityConstraint< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::EqualityConstraint_State< Real >, ROL::RiskLessEqualityConstraint< Real >, and ROL::EqualityConstraint_Partitioned< Real >.
Referenced by ROL::CompositeStep< Real >::accept(), ROL::CompositeStep< Real >::compute(), ROL::InteriorPointStep< Real >::initialize(), ROL::CompositeStep< Real >::initialize(), ROL::CompositeStep< Real >::update(), and ROL::MoreauYosidaPenaltyStep< Real >::updateState().
|
virtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
[out] | jv | is the result of applying the constraint Jacobian to v at x; a constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{jv} = c'(x)v\), where \(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, Normalization_Constraint< Real >, ROL::InteriorPoint::CompositeConstraint< Real >, ROL::PrimalDualInteriorPointResidual< Real >, Normalization_Constraint< Real >, ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::ZOO::EqualityConstraint_SimpleEqConstrained< Real, XPrim, XDual, CPrim, CDual >, ROL::PrimalDualInteriorPointResidual< Real >, ROL::ZOO::InequalityConstraint_HS32< Real >, ROL::ZOO::EqualityConstraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >, ROL::InteriorPoint::PrimalDualResidual< Real >, ROL::InteriorPoint::PrimalDualResidual< Real >, ROL::ZOO::EqualityConstraint_HS39b< Real >, ROL::BinaryConstraint< Real >, ROL::ZOO::InequalityConstraint_HS29< Real >, ROL::ZOO::EqualityConstraint_HS32< Real >, ROL::CompositeConstraint< Real >, ROL::ZOO::InequalityConstraint_HS24< Real >, ROL::ZOO::EqualityConstraint_HS39a< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::ScalarLinearEqualityConstraint< Real >, ROL::LinearEqualityConstraint< Real >, ROL::StdEqualityConstraint< Real >, ROL::BoundInequalityConstraint< Real >, ROL::LowerBoundInequalityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::UpperBoundInequalityConstraint< Real >, ROL::RiskLessEqualityConstraint< Real >, ROL::EqualityConstraint_State< Real >, and ROL::EqualityConstraint_Partitioned< Real >.
Definition at line 51 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::axpy(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::norm(), ROL::Vector< Real >::scale(), value(), and ROL::Vector< Real >::zero().
Referenced by ROL::CompositeStep< Real >::accept(), ROL::StdEqualityConstraint< Real >::applyJacobian(), ROL::CompositeStep< Real >::computeQuasinormalStep(), and ROL::CompositeStep< Real >::solveTangentialSubproblem().
|
virtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
[out] | ajv | is the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector |
[in] | v | is a dual constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, Normalization_Constraint< Real >, ROL::InteriorPoint::CompositeConstraint< Real >, Normalization_Constraint< Real >, ROL::ZOO::EqualityConstraint_SimpleEqConstrained< Real, XPrim, XDual, CPrim, CDual >, ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::ZOO::EqualityConstraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >, ROL::ZOO::InequalityConstraint_HS32< Real >, ROL::BinaryConstraint< Real >, ROL::ZOO::EqualityConstraint_HS39b< Real >, ROL::CompositeConstraint< Real >, ROL::ZOO::InequalityConstraint_HS29< Real >, ROL::ZOO::EqualityConstraint_HS32< Real >, ROL::ZOO::InequalityConstraint_HS24< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::ZOO::EqualityConstraint_HS39a< Real >, ROL::StdEqualityConstraint< Real >, ROL::ScalarLinearEqualityConstraint< Real >, ROL::LinearEqualityConstraint< Real >, ROL::BoundInequalityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::UpperBoundInequalityConstraint< Real >, ROL::LowerBoundInequalityConstraint< Real >, ROL::RiskLessEqualityConstraint< Real >, ROL::EqualityConstraint_State< Real >, and ROL::EqualityConstraint_Partitioned< Real >.
Definition at line 87 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::dual().
Referenced by ROL::CompositeStep< Real >::accept(), ROL::StdEqualityConstraint< Real >::applyAdjointJacobian(), ROL::CompositeStep< Real >::compute(), ROL::CompositeStep< Real >::computeLagrangeMultiplier(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::CompositeStep< Real >::initialize(), ROL::CompositeStep< Real >::update(), and ROL::MoreauYosidaPenaltyStep< Real >::updateState().
|
virtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
[out] | ajv | is the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector |
[in] | v | is a dual constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in] | dualv | is a vector used for temporary variables; a constraint-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Definition at line 99 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::axpy(), ROL::Vector< Real >::basis(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::dimension(), ROL::Vector< Real >::dual(), ROL::Vector< Real >::norm(), value(), and ROL::Vector< Real >::zero().
|
virtual |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).
[out] | ahuv | is the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector |
[in] | u | is the direction vector; a dual constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \( \mathsf{ahuv} = c''(x)(v,\cdot)^*u \), where \(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation based on the adjoint Jacobian.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, Normalization_Constraint< Real >, ROL::InteriorPoint::CompositeConstraint< Real >, ROL::ZOO::EqualityConstraint_SimpleEqConstrained< Real, XPrim, XDual, CPrim, CDual >, Normalization_Constraint< Real >, ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::ZOO::EqualityConstraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >, ROL::ZOO::InequalityConstraint_HS32< Real >, ROL::CompositeConstraint< Real >, ROL::BinaryConstraint< Real >, ROL::ZOO::EqualityConstraint_HS39b< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::ZOO::InequalityConstraint_HS29< Real >, ROL::ZOO::EqualityConstraint_HS32< Real >, ROL::ZOO::InequalityConstraint_HS24< Real >, ROL::ZOO::EqualityConstraint_HS39a< Real >, ROL::StdEqualityConstraint< Real >, ROL::ScalarLinearEqualityConstraint< Real >, ROL::LinearEqualityConstraint< Real >, ROL::BoundInequalityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::UpperBoundInequalityConstraint< Real >, ROL::LowerBoundInequalityConstraint< Real >, ROL::EqualityConstraint_Partitioned< Real >, ROL::RiskLessEqualityConstraint< Real >, and ROL::EqualityConstraint_State< Real >.
Definition at line 170 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::axpy(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::norm(), ROL::Vector< Real >::scale(), and ROL::Vector< Real >::zero().
Referenced by ROL::CompositeStep< Real >::accept(), ROL::StdEqualityConstraint< Real >::applyAdjointHessian(), ROL::ZOO::EqualityConstraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::applyAdjointHessian(), ROL::Reduced_EqualityConstraint_SimOpt< Real >::applyAdjointHessian(), and ROL::CompositeStep< Real >::solveTangentialSubproblem().
|
virtual |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]
where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator.
[out] | v1 | is the optimization-space component of the result |
[out] | v2 | is the dual constraint-space component of the result |
[in] | b1 | is the dual optimization-space component of the right-hand side |
[in] | b2 | is the constraint-space component of the right-hand side |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is the nominal relative residual tolerance |
On return, \( [\mathsf{v1} \,\, \mathsf{v2}] \) approximately solves the augmented system, where the size of the residual is governed by special stopping conditions.
The default implementation is the preconditioned generalized minimal residual (GMRES) method, which enables the use of nonsymmetric preconditioners.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, Normalization_Constraint< Real >, ROL::StdEqualityConstraint< Real >, ROL::ScalarLinearEqualityConstraint< Real >, and ROL::StdInequalityConstraint< Real >.
Definition at line 200 of file ROL_EqualityConstraintDef.hpp.
References applyJacobian(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::dot(), ROL::Vector< Real >::dual(), ROL::Vector< Real >::plus(), and ROL::Vector< Real >::zero().
Referenced by ROL::CompositeStep< Real >::accept(), ROL::CompositeStep< Real >::computeLagrangeMultiplier(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::StdEqualityConstraint< Real >::solveAugmentedSystem(), Normalization_Constraint< Real >::solveAugmentedSystem(), ROL::EqualityConstraint_SimOpt< Real >::solveAugmentedSystem(), and ROL::CompositeStep< Real >::solveTangentialSubproblem().
|
inlinevirtual |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]
where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method.
[out] | pv | is the result of applying the constraint preconditioner to v at x; a dual constraint-space vector |
[in] | v | is a constraint-space vector |
[in] | x | is the preconditioner argument; an optimization-space vector |
[in] | g | is the preconditioner argument; a dual optimization-space vector, unused |
[in,out] | tol | is a tolerance for inexact evaluations |
On return, \(\mathsf{pv} = P(x)v\), where \(v \in \mathcal{C}\), \(\mathsf{pv} \in \mathcal{C}^*\).
The default implementation is the Riesz map in \(L(\mathcal{C}, \mathcal{C}^*)\).
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::StdEqualityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::EqualityConstraint_Partitioned< Real >, and ROL::EqualityConstraint_State< Real >.
Definition at line 264 of file ROL_EqualityConstraint.hpp.
References ROL::Vector< Real >::dual(), and ROL::Vector< Real >::set().
Referenced by ROL::StdEqualityConstraint< Real >::applyPreconditioner(), and ROL::EqualityConstraint_SimOpt< Real >::applyPreconditioner().
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >, ROL::InteriorPoint::CompositeConstraint< Real >, ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::PrimalDualInteriorPointResidual< Real >, ROL::PrimalDualInteriorPointResidual< Real >, ROL::LinearEqualityConstraint< Real >, ROL::CompositeConstraint< Real >, ROL::EqualityConstraint_State< Real >, ROL::SimulatedEqualityConstraint< Real >, ROL::StdInequalityConstraint< Real >, ROL::StdEqualityConstraint< Real >, and ROL::EqualityConstraint_Partitioned< Real >.
Definition at line 280 of file ROL_EqualityConstraint.hpp.
Referenced by ROL::CompositeStep< Real >::accept(), ROL::CompositeStep< Real >::initialize(), ROL::MoreauYosidaPenaltyStep< Real >::update(), ROL::CompositeStep< Real >::update(), and ROL::MoreauYosidaPenaltyStep< Real >::updateState().
|
inlinevirtual |
Check if the vector, v, is feasible.
Reimplemented in ROL::EqualityConstraint_SimOpt< Real >.
Definition at line 284 of file ROL_EqualityConstraint.hpp.
|
inline |
Turn on constraints.
Definition at line 288 of file ROL_EqualityConstraint.hpp.
References ROL::EqualityConstraint< Real >::activated_.
|
inline |
Turn off constraints.
Definition at line 292 of file ROL_EqualityConstraint.hpp.
References ROL::EqualityConstraint< Real >::activated_.
|
inline |
Check if constraints are on.
Definition at line 296 of file ROL_EqualityConstraint.hpp.
References ROL::EqualityConstraint< Real >::activated_.
|
virtual |
Finite-difference check for the constraint Jacobian application.
Details here.
Definition at line 388 of file ROL_EqualityConstraintDef.hpp.
References applyJacobian(), ROL::Vector< Real >::clone(), ROL::Finite_Difference_Arrays::shifts, value(), and ROL::Finite_Difference_Arrays::weights.
Referenced by main().
|
virtual |
Finite-difference check for the constraint Jacobian application.
Details here.
Definition at line 369 of file ROL_EqualityConstraintDef.hpp.
|
virtual |
Finite-difference check for the application of the adjoint of constraint Jacobian.
Details here. (This function should be deprecated)
Definition at line 494 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::basis(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::dimension(), ROL::Vector< Real >::dual(), and value().
Referenced by main().
|
inlinevirtual |
Definition at line 349 of file ROL_EqualityConstraint.hpp.
References ROL::Vector< Real >::dual().
|
virtual |
Definition at line 590 of file ROL_EqualityConstraintDef.hpp.
References applyJacobian(), ROL::Vector< Real >::clone(), and ROL::Vector< Real >::dot().
|
virtual |
Finite-difference check for the application of the adjoint of constraint Hessian.
Details here.
Definition at line 642 of file ROL_EqualityConstraintDef.hpp.
References ROL::Vector< Real >::clone(), ROL::Finite_Difference_Arrays::shifts, and ROL::Finite_Difference_Arrays::weights.
Referenced by main().
|
virtual |
Finite-difference check for the application of the adjoint of constraint Hessian.
Details here.
Definition at line 623 of file ROL_EqualityConstraintDef.hpp.
|
inlineprotected |
Definition at line 398 of file ROL_EqualityConstraint.hpp.
References ROL::EqualityConstraint< Real >::param_.
Referenced by EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_11(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_12(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_21(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_22(), EqualityConstraint_BurgersControl< Real >::applyAdjointJacobian_1(), DiffusionEqualityConstraint< Real >::applyAdjointJacobian_2(), EqualityConstraint_BurgersControl< Real >::applyAdjointJacobian_2(), EqualityConstraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), DiffusionEqualityConstraint< Real >::applyInverseJacobian_1(), EqualityConstraint_BurgersControl< Real >::applyInverseJacobian_1(), EqualityConstraint_BurgersControl< Real >::applyJacobian_1(), DiffusionEqualityConstraint< Real >::applyJacobian_1(), DiffusionEqualityConstraint< Real >::applyJacobian_2(), EqualityConstraint_BurgersControl< Real >::applyJacobian_2(), EqualityConstraint_BurgersControl< Real >::compute_pde_jacobian(), EqualityConstraint_BurgersControl< Real >::compute_residual(), DiffusionEqualityConstraint< Real >::solve(), ROL::CompositeEqualityConstraint_SimOpt< Real >::solveConRed(), DiffusionEqualityConstraint< Real >::value(), and EqualityConstraint_BurgersControl< Real >::value().
|
inlinevirtual |
Reimplemented in ROL::Reduced_EqualityConstraint_SimOpt< Real >, ROL::CompositeEqualityConstraint_SimOpt< Real >, ROL::CompositeConstraint< Real >, ROL::EqualityConstraint_Partitioned< Real >, ROL::EqualityConstraint_State< Real >, and ROL::RiskLessEqualityConstraint< Real >.
Definition at line 403 of file ROL_EqualityConstraint.hpp.
References ROL::EqualityConstraint< Real >::param_.
Referenced by ROL::RiskLessEqualityConstraint< Real >::setParameter(), ROL::EqualityConstraint_State< Real >::setParameter(), ROL::EqualityConstraint_Partitioned< Real >::setParameter(), ROL::CompositeConstraint< Real >::setParameter(), ROL::CompositeEqualityConstraint_SimOpt< Real >::setParameter(), and ROL::Reduced_EqualityConstraint_SimOpt< Real >::setParameter().
|
private |
Definition at line 90 of file ROL_EqualityConstraint.hpp.
Referenced by ROL::EqualityConstraint< Real >::activate(), ROL::EqualityConstraint< Real >::deactivate(), and ROL::EqualityConstraint< Real >::isActivated().
|
private |
Definition at line 395 of file ROL_EqualityConstraint.hpp.
Referenced by ROL::EqualityConstraint< Real >::getParameter(), and ROL::EqualityConstraint< Real >::setParameter().