ROL
|
Symmetrized form of the KKT operator for the Type-EB problem with equality and bound multipliers. More...
#include <ROL_PrimalDualInteriorPointReducedResidual.hpp>
Classes | |
class | InFill |
class | SafeDivide |
class | SetZeros |
Public Member Functions | |
PrimalDualInteriorPointResidual (const ROL::Ptr< PENALTY > &penalty, const ROL::Ptr< CON > &con, const V &x, ROL::Ptr< V > &scratch) | |
void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
void | value (V &c, const V &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
int | getNumberFunctionEvaluations (void) const |
int | getNumberGradientEvaluations (void) const |
int | getNumberConstraintEvaluations (void) const |
PrimalDualInteriorPointResidual (const ROL::Ptr< OBJ > &obj, const ROL::Ptr< CON > &con, const ROL::Ptr< BND > &bnd, const V &x, const ROL::Ptr< const V > &maskL, const ROL::Ptr< const V > &maskU, ROL::Ptr< V > &scratch, Real mu, bool symmetrize) | |
void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
void | value (V &c, const V &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
void | reset (const Real mu) |
int | getNumberFunctionEvaluations (void) const |
int | getNumberGradientEvaluations (void) const |
int | getNumberConstraintEvaluations (void) const |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef ROL::ParameterList | PL |
typedef Vector< Real > | V |
typedef PartitionedVector< Real > | PV |
typedef Objective< Real > | OBJ |
typedef Constraint< Real > | CON |
typedef BoundConstraint< Real > | BND |
typedef LinearOperator< Real > | LOP |
typedef InteriorPointPenalty < Real > | PENALTY |
typedef Elementwise::ValueSet < Real > | ValueSet |
typedef PV::size_type | size_type |
typedef ROL::ParameterList | PL |
typedef Vector< Real > | V |
typedef PartitionedVector< Real > | PV |
typedef Objective< Real > | OBJ |
typedef Constraint< Real > | CON |
typedef BoundConstraint< Real > | BND |
typedef Elementwise::ValueSet < Real > | ValueSet |
typedef PV::size_type | size_type |
Private Member Functions | |
ROL::Ptr< V > | getOptMult (V &vec) |
ROL::Ptr< const V > | getOptMult (const V &vec) |
Private Attributes | |
ROL::Ptr< const V > | x_ |
ROL::Ptr< const V > | l_ |
ROL::Ptr< const V > | zl_ |
ROL::Ptr< const V > | zu_ |
ROL::Ptr< const V > | xl_ |
ROL::Ptr< const V > | xu_ |
const ROL::Ptr< const V > | maskL_ |
const ROL::Ptr< const V > | maskU_ |
ROL::Ptr< V > | scratch_ |
const ROL::Ptr< PENALTY > | penalty_ |
const ROL::Ptr< OBJ > | obj_ |
const ROL::Ptr< CON > | con_ |
const ROL::Ptr< BND > | bnd_ |
Real | mu_ |
bool | symmetrize_ |
Real | one_ |
Real | zero_ |
int | nfval_ |
int | ngrad_ |
int | ncval_ |
Elementwise::Multiply< Real > | mult_ |
SafeDivide | div_ |
SetZeros | setZeros_ |
InFill | inFill_ |
Static Private Attributes | |
static const size_type | OPT = 0 |
static const size_type | EQUAL = 1 |
static const size_type | LOWER = 2 |
static const size_type | UPPER = 3 |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Symmetrized form of the KKT operator for the Type-EB problem with equality and bound multipliers.
The system is symmetrized by multiplying through by
S = [ I 0 0 0 ] [ 0 I 0 0 ] [ 0 0 -inv(Zl) 0 ] [ 0 0 0 -inv(Zu) ]
Where Zl and Zu are diagonal matrices containing the lower and upper bound multipliers respectively
Infinite bounds have identically zero-valued lagrange multipliers.
Definition at line 77 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 79 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 81 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 82 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 83 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 84 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 85 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 86 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 87 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 89 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 91 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
|
private |
Definition at line 46 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 48 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 49 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 50 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 51 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 52 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 54 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 56 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
inline |
Definition at line 120 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::maskL_, ROL::PrimalDualInteriorPointResidual< Real >::maskU_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::penalty_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inline |
Definition at line 142 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented from ROL::Constraint< Real >.
Definition at line 146 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::Constraint< Real >.
Definition at line 162 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::penalty_, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#91, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 187 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inline |
Definition at line 248 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::nfval_.
|
inline |
Definition at line 252 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::ngrad_.
|
inline |
Definition at line 256 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::ncval_.
|
inlineprivate |
Definition at line 124 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), and ROL::PrimalDualInteriorPointResidual< Real >::OPT.
|
inlineprivate |
Definition at line 131 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), and ROL::PrimalDualInteriorPointResidual< Real >::OPT.
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented from ROL::Constraint< Real >.
Definition at line 166 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::Constraint< Real >.
Definition at line 183 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::div_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::maskL_, ROL::PrimalDualInteriorPointResidual< Real >::maskU_, ROL::PrimalDualInteriorPointResidual< Real >::mu_, ROL::PrimalDualInteriorPointResidual< Real >::mult_, ROL::PrimalDualInteriorPointResidual< Real >::ncval_, ROL::PrimalDualInteriorPointResidual< Real >::ngrad_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::one_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::symmetrize_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#91, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 280 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::div_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::inFill_, ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::maskL_, ROL::PrimalDualInteriorPointResidual< Real >::maskU_, ROL::PrimalDualInteriorPointResidual< Real >::mult_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::symmetrize_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.
|
inline |
|
inline |
Definition at line 418 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::nfval_.
|
inline |
Definition at line 422 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::ngrad_.
|
inline |
Definition at line 426 of file ROL_PrimalDualInteriorPointResidual.hpp.
References ROL::PrimalDualInteriorPointResidual< Real >::ncval_.
|
staticprivate |
Definition at line 95 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::getOptMult(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
staticprivate |
Definition at line 96 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::getOptMult(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
staticprivate |
Definition at line 97 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
staticprivate |
Definition at line 98 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 100 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 101 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 102 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 103 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
|
private |
|
private |
|
private |
|
private |
Definition at line 111 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 113 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 114 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::PrimalDualInteriorPointResidual< Real >::update(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
|
private |
Definition at line 67 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 82 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::reset(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 84 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 86 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 87 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 89 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::getNumberFunctionEvaluations(), and ROL::PrimalDualInteriorPointResidual< Real >::reset().
|
private |
|
private |
|
private |
Definition at line 93 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 102 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), and ROL::PrimalDualInteriorPointResidual< Real >::value().
|
private |
Definition at line 111 of file ROL_PrimalDualInteriorPointResidual.hpp.
|
private |
Definition at line 121 of file ROL_PrimalDualInteriorPointResidual.hpp.
Referenced by ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian().