ROL
ROL_InteriorPointStep.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Rapid Optimization Library (ROL) Package
4 //
5 // Copyright 2014 NTESS and the ROL contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
10 #ifndef ROL_INTERIORPOINTSTEP_H
11 #define ROL_INTERIORPOINTSTEP_H
12 
13 #include "ROL_CompositeStep.hpp"
15 #include "ROL_FletcherStep.hpp"
16 #include "ROL_BundleStep.hpp"
17 #include "ROL_TrustRegionStep.hpp"
18 #include "ROL_LineSearchStep.hpp"
20 #include "ROL_BundleStatusTest.hpp"
21 #include "ROL_InteriorPoint.hpp"
23 #include "ROL_Types.hpp"
25 
26 
27 namespace ROL {
28 
29 template<class Real>
30 class AugmentedLagrangianStep;
31 
32 template <class Real>
33 class InteriorPointStep : public Step<Real> {
34 
37 
38 private:
39 
40  ROL::Ptr<StatusTest<Real> > status_;
41  ROL::Ptr<Step<Real> > step_;
42  ROL::Ptr<Algorithm<Real> > algo_;
43  ROL::Ptr<BoundConstraint<Real> > bnd_;
44  ROL::ParameterList parlist_;
45 
46  // Storage
47  ROL::Ptr<Vector<Real> > x_;
48  ROL::Ptr<Vector<Real> > g_;
49  ROL::Ptr<Vector<Real> > l_;
50  ROL::Ptr<Vector<Real> > c_;
51 
52  Real mu_; // Barrier parameter
53  Real mumin_; // Minimal value of barrier parameter
54  Real mumax_; // Maximal value of barrier parameter
55  Real rho_; // Barrier parameter reduction factor
56 
57  // For the subproblem
58  int subproblemIter_; // Status test maximum number of iterations
59 
60  int verbosity_; // Adjust level of detail in printing step information
61  bool print_;
62 
64 
66  std::string stepname_;
67 
68 public:
69 
71  using Step<Real>::compute;
72  using Step<Real>::update;
73 
75 
76  InteriorPointStep(ROL::ParameterList &parlist) :
77  Step<Real>(),
78  status_(ROL::nullPtr),
79  step_(ROL::nullPtr),
80  algo_(ROL::nullPtr),
81  parlist_(parlist),
82  x_(ROL::nullPtr),
83  g_(ROL::nullPtr),
84  l_(ROL::nullPtr),
85  c_(ROL::nullPtr),
86  hasEquality_(false),
88  stepname_("Composite Step") {
89 
90  using ROL::ParameterList;
91 
92  verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
93 
94  // List of general Interior Point parameters
95  ParameterList& iplist = parlist.sublist("Step").sublist("Interior Point");
96  mu_ = iplist.get("Initial Barrier Penalty",1.0);
97  mumin_ = iplist.get("Minimum Barrier Penalty",1.e-4);
98  mumax_ = iplist.get("Maximum Barrier Penalty",1e8);
99  rho_ = iplist.get("Barrier Penalty Reduction Factor",0.5);
100 
101  // Subproblem step information
102  print_ = iplist.sublist("Subproblem").get("Print History",false);
103  Real gtol = iplist.sublist("Subproblem").get("Optimality Tolerance",1e-8);
104  Real ctol = iplist.sublist("Subproblem").get("Feasibility Tolerance",1e-8);
105  Real stol = static_cast<Real>(1e-6)*std::min(gtol,ctol);
106  int maxit = iplist.sublist("Subproblem").get("Iteration Limit",1000);
107  parlist_.sublist("Status Test").set("Gradient Tolerance", gtol);
108  parlist_.sublist("Status Test").set("Constraint Tolerance", ctol);
109  parlist_.sublist("Status Test").set("Step Tolerance", stol);
110  parlist_.sublist("Status Test").set("Iteration Limit", maxit);
111  // Get step name from parameterlist
112  stepname_ = iplist.sublist("Subproblem").get("Step Type","Composite Step");
114  }
115 
118  void initialize( Vector<Real> &x, const Vector<Real> &g,
119  Vector<Real> &l, const Vector<Real> &c,
120  Objective<Real> &obj, Constraint<Real> &con,
121  AlgorithmState<Real> &algo_state ) {
122  hasEquality_ = true;
123 
124  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
125  state->descentVec = x.clone();
126  state->gradientVec = g.clone();
127  state->constraintVec = c.clone();
128 
129  // Initialize storage
130  x_ = x.clone();
131  g_ = g.clone();
132  l_ = l.clone();
133  c_ = c.clone();
134 
135  x_->set(x);
136 
137  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
138  auto& ipcon = dynamic_cast<IPCON&>(con);
139 
140  // Set initial penalty
141  ipobj.updatePenalty(mu_);
142 
143  algo_state.nfval = 0;
144  algo_state.ncval = 0;
145  algo_state.ngrad = 0;
146 
147  Real zerotol = 0.0;
148  obj.update(x,true,algo_state.iter);
149  algo_state.value = obj.value(x,zerotol);
150 
151  obj.gradient(*g_,x,zerotol);
152  algo_state.gnorm = g_->norm();
153 
154  con.value(*c_,x,zerotol);
155  algo_state.cnorm = c_->norm();
156 
157  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
158  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
159  algo_state.ncval += ipcon.getNumberConstraintEvaluations();
160 
161  }
162 
163 
164 
167  AlgorithmState<Real> &algo_state ) {
168  bnd.projectInterior(x);
169  initialize(x,g,l,c,obj,con,algo_state);
170  }
171 
172 
175  void initialize( Vector<Real> &x, const Vector<Real> &g,
177  AlgorithmState<Real> &algo_state ) {
178  bnd.projectInterior(x);
179 
180  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
181  state->descentVec = x.clone();
182  state->gradientVec = g.clone();
183 
184  // Initialize storage
185  x_ = x.clone(); x_->set(x);
186  g_ = g.clone();
187 
188  // Set initial penalty
189  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
190  ipobj.updatePenalty(mu_);
191 
192  algo_state.nfval = 0;
193  algo_state.ncval = 0;
194  algo_state.ngrad = 0;
195 
196  Real zerotol = std::sqrt(ROL_EPSILON<Real>());
197  obj.update(x,true,algo_state.iter);
198  algo_state.value = obj.value(x,zerotol);
199 
200  obj.gradient(*g_,x,zerotol);
201  algo_state.gnorm = g_->norm();
202 
203  algo_state.cnorm = static_cast<Real>(0);
204 
205  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
206  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
207 
208  bnd_ = ROL::makePtr<BoundConstraint<Real>>();
209  bnd_->deactivate();
210  }
211 
212 
213 
217  const Vector<Real> &x,
218  const Vector<Real> &l,
219  Objective<Real> &obj,
220  Constraint<Real> &con,
221  AlgorithmState<Real> &algo_state ) {
222  // Grab interior point objective and constraint
223  //auto& ipobj = dynamic_cast<IPOBJ&>(obj);
224  //auto& ipcon = dynamic_cast<IPCON&>(con);
225 
226  Real one(1);
227  // Create the algorithm
228  Ptr<Objective<Real>> penObj;
230  Ptr<Objective<Real>> raw_obj = makePtrFromRef(obj);
231  Ptr<Constraint<Real>> raw_con = makePtrFromRef(con);
232  Ptr<StepState<Real>> state = Step<Real>::getState();
233  penObj = makePtr<AugmentedLagrangian<Real>>(raw_obj,raw_con,l,one,x,*(state->constraintVec),parlist_);
234  step_ = makePtr<AugmentedLagrangianStep<Real>>(parlist_);
235  }
236  else if (stepType_ == STEP_FLETCHER) {
237  Ptr<Objective<Real>> raw_obj = makePtrFromRef(obj);
238  Ptr<Constraint<Real>> raw_con = makePtrFromRef(con);
239  Ptr<StepState<Real>> state = Step<Real>::getState();
240  penObj = makePtr<Fletcher<Real>>(raw_obj,raw_con,x,*(state->constraintVec),parlist_);
241  step_ = makePtr<FletcherStep<Real>>(parlist_);
242  }
243  else {
244  penObj = makePtrFromRef(obj);
245  stepname_ = "Composite Step";
247  step_ = makePtr<CompositeStep<Real>>(parlist_);
248  }
249  status_ = makePtr<ConstraintStatusTest<Real>>(parlist_);
250  algo_ = ROL::makePtr<Algorithm<Real>>(step_,status_,false);
251 
252  // Run the algorithm
253  x_->set(x); l_->set(l);
254  algo_->run(*x_,*g_,*l_,*c_,*penObj,con,print_);
255  s.set(*x_); s.axpy(-one,x);
256 
257  // Get number of iterations from the subproblem solve
258  subproblemIter_ = (algo_->getState())->iter;
259  }
260 
262  const Vector<Real> &x,
263  const Vector<Real> &l,
264  Objective<Real> &obj,
265  Constraint<Real> &con,
267  AlgorithmState<Real> &algo_state ) {
268  compute(s,x,l,obj,con,algo_state);
269  }
270 
271  // Bound constrained
273  const Vector<Real> &x,
274  Objective<Real> &obj,
276  AlgorithmState<Real> &algo_state ) {
277  // Grab interior point objective and constraint
278  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
279 
280  // Create the algorithm
281  if (stepType_ == STEP_BUNDLE) {
282  status_ = makePtr<BundleStatusTest<Real>>(parlist_);
283  step_ = makePtr<BundleStep<Real>>(parlist_);
284  }
285  else if (stepType_ == STEP_LINESEARCH) {
286  status_ = makePtr<StatusTest<Real>>(parlist_);
287  step_ = makePtr<LineSearchStep<Real>>(parlist_);
288  }
289  else {
290  status_ = makePtr<StatusTest<Real>>(parlist_);
291  step_ = makePtr<TrustRegionStep<Real>>(parlist_);
292  }
293  algo_ = ROL::makePtr<Algorithm<Real>>(step_,status_,false);
294 
295  // Run the algorithm
296  x_->set(x);
297  algo_->run(*x_,*g_,ipobj,*bnd_,print_);
298  s.set(*x_); s.axpy(static_cast<Real>(-1),x);
299 
300  // Get number of iterations from the subproblem solve
301  subproblemIter_ = (algo_->getState())->iter;
302  }
303 
304 
305 
309  Vector<Real> &l,
310  const Vector<Real> &s,
311  Objective<Real> &obj,
312  Constraint<Real> &con,
313  AlgorithmState<Real> &algo_state ) {
314  // Grab interior point objective and constraint
315  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
316  auto& ipcon = dynamic_cast<IPCON&>(con);
317 
318  // If we can change the barrier parameter, do so
319  if( (rho_< 1.0 && mu_ > mumin_) || (rho_ > 1.0 && mu_ < mumax_) ) {
320  mu_ *= rho_;
321  ipobj.updatePenalty(mu_);
322  }
323 
324  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
325  state->SPiter = subproblemIter_;
326 
327  // Update optimization vector
328  x.plus(s);
329 
330  algo_state.iterateVec->set(x);
331  state->descentVec->set(s);
332  algo_state.snorm = s.norm();
333  algo_state.iter++;
334 
335  Real zerotol = 0.0;
336 
337  algo_state.value = ipobj.value(x,zerotol);
338  algo_state.value = ipobj.getObjectiveValue();
339 
340  ipcon.value(*c_,x,zerotol);
341  state->constraintVec->set(*c_);
342 
343  ipobj.gradient(*g_,x,zerotol);
344  state->gradientVec->set(*g_);
345 
346  ipcon.applyAdjointJacobian(*g_,*l_,x,zerotol);
347  state->gradientVec->plus(*g_);
348 
349  algo_state.gnorm = g_->norm();
350  algo_state.cnorm = state->constraintVec->norm();
351  algo_state.snorm = s.norm();
352 
353  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
354  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
355  algo_state.ncval += ipcon.getNumberConstraintEvaluations();
356 
357  }
358 
360  Vector<Real> &l,
361  const Vector<Real> &s,
362  Objective<Real> &obj,
363  Constraint<Real> &con,
365  AlgorithmState<Real> &algo_state ) {
366  update(x,l,s,obj,con,algo_state);
367 
368  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
369  x_->set(x);
370  x_->axpy(static_cast<Real>(-1),state->gradientVec->dual());
371  bnd.project(*x_);
372  x_->axpy(static_cast<Real>(-1),x);
373  algo_state.gnorm = x_->norm();
374  }
375 
377  const Vector<Real> &s,
378  Objective<Real> &obj,
380  AlgorithmState<Real> &algo_state ) {
381  // Grab interior point objective
382  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
383 
384  // If we can change the barrier parameter, do so
385  if( (rho_< 1.0 && mu_ > mumin_) || (rho_ > 1.0 && mu_ < mumax_) ) {
386  mu_ *= rho_;
387  ipobj.updatePenalty(mu_);
388  }
389 
390  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
391 
392  // Update optimization vector
393  x.plus(s);
394 
395  algo_state.iterateVec->set(x);
396  state->descentVec->set(s);
397  algo_state.snorm = s.norm();
398  algo_state.iter++;
399 
400  Real zerotol = std::sqrt(ROL_EPSILON<Real>());
401 
402  algo_state.value = ipobj.value(x,zerotol);
403  algo_state.value = ipobj.getObjectiveValue();
404 
405  ipobj.gradient(*g_,x,zerotol);
406  state->gradientVec->set(*g_);
407 
408  x_->set(x);
409  x_->axpy(static_cast<Real>(-1),state->gradientVec->dual());
410  bnd.project(*x_);
411  x_->axpy(static_cast<Real>(-1),x);
412 
413  algo_state.gnorm = x_->norm();
414  algo_state.snorm = s.norm();
415 
416  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
417  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
418  }
419 
422  std::string printHeader( void ) const {
423  std::stringstream hist;
424 
425  if( verbosity_ > 0 ) {
426 
427  hist << std::string(116,'-') << "\n";
428  hist << "Interior Point status output definitions\n\n";
429 
430  hist << " IPiter - Number of interior point steps taken\n";
431  hist << " SPiter - Number of subproblem solver iterations\n";
432  hist << " penalty - Penalty parameter multiplying the barrier objective\n";
433  hist << " fval - Number of objective evaluations\n";
434  if (hasEquality_) {
435  hist << " cnorm - Norm of the composite constraint\n";
436  hist << " gLnorm - Norm of the Lagrangian's gradient\n";
437  }
438  else {
439  hist << " gnorm - Norm of the projected norm of the objective gradient\n";
440  }
441  hist << " snorm - Norm of step (update to optimzation and slack vector)\n";
442  hist << " #fval - Number of objective function evaluations\n";
443  hist << " #grad - Number of gradient evaluations\n";
444  if (hasEquality_) {
445  hist << " #cval - Number of composite constraint evaluations\n";
446  }
447  hist << std::string(116,'-') << "\n";
448  }
449 
450  hist << " ";
451  hist << std::setw(9) << std::left << "IPiter";
452  hist << std::setw(9) << std::left << "SPiter";
453  hist << std::setw(15) << std::left << "penalty";
454  hist << std::setw(15) << std::left << "fval";
455  if (hasEquality_) {
456  hist << std::setw(15) << std::left << "cnorm";
457  hist << std::setw(15) << std::left << "gLnorm";
458  }
459  else {
460  hist << std::setw(15) << std::left << "gnorm";
461  }
462  hist << std::setw(15) << std::left << "snorm";
463  hist << std::setw(8) << std::left << "#fval";
464  hist << std::setw(8) << std::left << "#grad";
465  if (hasEquality_) {
466  hist << std::setw(8) << std::left << "#cval";
467  }
468 
469  hist << "\n";
470  return hist.str();
471  }
472 
475  std::string printName( void ) const {
476  std::stringstream hist;
477  hist << "\n" << "Primal Interior Point Solver\n";
478  return hist.str();
479  }
480 
483  std::string print( AlgorithmState<Real> &algo_state, bool pHeader = false ) const {
484  std::stringstream hist;
485  hist << std::scientific << std::setprecision(6);
486  if ( algo_state.iter == 0 ) {
487  hist << printName();
488  }
489  if ( pHeader ) {
490  hist << printHeader();
491  }
492  if ( algo_state.iter == 0 ) {
493  hist << " ";
494  hist << std::setw(9) << std::left << algo_state.iter;
495  hist << std::setw(9) << std::left << subproblemIter_;
496  hist << std::setw(15) << std::left << mu_;
497  hist << std::setw(15) << std::left << algo_state.value;
498  if (hasEquality_) {
499  hist << std::setw(15) << std::left << algo_state.cnorm;
500  }
501  hist << std::setw(15) << std::left << algo_state.gnorm;
502  hist << "\n";
503  }
504  else {
505  hist << " ";
506  hist << std::setw(9) << std::left << algo_state.iter;
507  hist << std::setw(9) << std::left << subproblemIter_;
508  hist << std::setw(15) << std::left << mu_;
509  hist << std::setw(15) << std::left << algo_state.value;
510  if (hasEquality_) {
511  hist << std::setw(15) << std::left << algo_state.cnorm;
512  }
513  hist << std::setw(15) << std::left << algo_state.gnorm;
514  hist << std::setw(15) << std::left << algo_state.snorm;
515 // hist << std::scientific << std::setprecision(6);
516  hist << std::setw(8) << std::left << algo_state.nfval;
517  hist << std::setw(8) << std::left << algo_state.ngrad;
518  if (hasEquality_) {
519  hist << std::setw(8) << std::left << algo_state.ncval;
520  }
521  hist << "\n";
522  }
523  return hist.str();
524  }
525 
526 }; // class InteriorPointStep
527 
528 } // namespace ROL
529 
530 #endif // ROL_INTERIORPOINTSTEP_H
Provides the interface to evaluate objective functions.
EStep StringToEStep(std::string s)
Definition: ROL_Types.hpp:361
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
Constraint_Partitioned< Real > IPCON
void update(Vector< Real > &x, Vector< Real > &l, const Vector< Real > &s, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful (equality constraints).
void initialize(Vector< Real > &x, const Vector< Real > &g, Vector< Real > &l, const Vector< Real > &c, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Initialize step with equality constraint.
virtual void plus(const Vector &x)=0
Compute , where .
virtual void projectInterior(Vector< Real > &x)
Project optimization variables into the interior of the feasible set.
InteriorPoint::PenalizedObjective< Real > IPOBJ
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:119
ROL::Ptr< Vector< Real > > c_
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
Provides the interface to compute optimization steps.
Definition: ROL_Step.hpp:34
ROL::Ptr< Step< Real > > step_
Contains definitions of custom data types in ROL.
void compute(Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:46
virtual void value(Vector< Real > &c, const Vector< Real > &x, Real &tol)=0
Evaluate the constraint operator at .
virtual void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
ROL::Ptr< Vector< Real > > g_
State for algorithm class. Will be used for restarts.
Definition: ROL_Types.hpp:109
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
void initialize(Vector< Real > &x, const Vector< Real > &g, Vector< Real > &l, const Vector< Real > &c, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with equality constraint.
ROL::Ptr< Algorithm< Real > > algo_
ROL::Ptr< StepState< Real > > getState(void)
Definition: ROL_Step.hpp:39
void update(Vector< Real > &x, Vector< Real > &l, const Vector< Real > &s, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Update step, if successful (equality constraints).
Has both inequality and equality constraints. Treat inequality constraint as equality with slack vari...
void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with no equality constraint.
ROL::Ptr< Vector< Real > > iterateVec
Definition: ROL_Types.hpp:123
ROL::Ptr< Vector< Real > > x_
InteriorPointStep(ROL::ParameterList &parlist)
void compute(Vector< Real > &s, const Vector< Real > &x, const Vector< Real > &l, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step (equality constraints).
virtual void project(Vector< Real > &x)
Project optimization variables onto the bounds.
std::string print(AlgorithmState< Real > &algo_state, bool pHeader=false) const
Print iterate status.
Provides the interface to apply upper and lower bound constraints.
void update(Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful.
std::string printName(void) const
Print step name.
std::string printHeader(void) const
Print iterate header.
ROL::Ptr< StatusTest< Real > > status_
void compute(Vector< Real > &s, const Vector< Real > &x, const Vector< Real > &l, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Compute step (equality constraints).
ROL::Ptr< Vector< Real > > l_
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:175
virtual Real norm() const =0
Returns where .
ROL::Ptr< BoundConstraint< Real > > bnd_
EStep
Enumeration of step types.
Definition: ROL_Types.hpp:243
Defines the general constraint operator interface.