ROL
|
Has both inequality and equality constraints. Treat inequality constraint as equality with slack variable. More...
#include <ROL_InteriorPoint.hpp>
Public Member Functions | |
CompositeConstraint (const Teuchos::RCP< InequalityConstraint< Real > > &incon, const Teuchos::RCP< EqualityConstraint< Real > > &eqcon) | |
CompositeConstraint (const Teuchos::RCP< InequalityConstraint< Real > > &incon) | |
int | getNumberConstraintEvaluations (void) |
void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
void | value (Vector< Real > &c, const Vector< Real > &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
![]() | |
virtual | ~EqualityConstraint () |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
EqualityConstraint (void) | |
virtual bool | isFeasible (const Vector< Real > &v) |
Check if the vector, v, is feasible. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef Vector< Real > | V |
typedef PartitionedVector< Real > | PV |
typedef PV::size_type | size_type |
Private Attributes | |
Teuchos::RCP < InequalityConstraint< Real > > | incon_ |
Teuchos::RCP < EqualityConstraint< Real > > | eqcon_ |
bool | hasEquality_ |
int | ncval_ |
Static Private Attributes | |
static const size_type | OPT = 0 |
static const size_type | SLACK = 1 |
static const size_type | INEQ = 0 |
static const size_type | EQUAL = 1 |
Additional Inherited Members | |
![]() | |
const std::vector< Real > | getParameter (void) const |
Has both inequality and equality constraints. Treat inequality constraint as equality with slack variable.
Definition at line 298 of file ROL_InteriorPoint.hpp.
|
private |
Definition at line 301 of file ROL_InteriorPoint.hpp.
|
private |
Definition at line 302 of file ROL_InteriorPoint.hpp.
|
private |
Definition at line 303 of file ROL_InteriorPoint.hpp.
|
inline |
Definition at line 321 of file ROL_InteriorPoint.hpp.
|
inline |
Definition at line 327 of file ROL_InteriorPoint.hpp.
|
inline |
Definition at line 332 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::ncval_.
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented from ROL::EqualityConstraint< Real >.
Definition at line 336 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::eqcon_, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::CompositeConstraint< Real >::hasEquality_, ROL::InteriorPoint::CompositeConstraint< Real >::incon_, ROL::InteriorPoint::CompositeConstraint< Real >::OPT, and ROL::InteriorPoint::CompositeConstraint< Real >::SLACK.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::EqualityConstraint< Real >.
Definition at line 351 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::eqcon_, ROL::InteriorPoint::CompositeConstraint< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::CompositeConstraint< Real >::hasEquality_, ROL::InteriorPoint::CompositeConstraint< Real >::incon_, ROL::InteriorPoint::CompositeConstraint< Real >::INEQ, ROL::InteriorPoint::CompositeConstraint< Real >::ncval_, ROL::InteriorPoint::CompositeConstraint< Real >::OPT, and ROL::InteriorPoint::CompositeConstraint< Real >::SLACK.
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
[out] | jv | is the result of applying the constraint Jacobian to v at x; a constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{jv} = c'(x)v\), where \(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::EqualityConstraint< Real >.
Definition at line 374 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::eqcon_, ROL::InteriorPoint::CompositeConstraint< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::CompositeConstraint< Real >::hasEquality_, ROL::InteriorPoint::CompositeConstraint< Real >::incon_, ROL::InteriorPoint::CompositeConstraint< Real >::INEQ, ROL::InteriorPoint::CompositeConstraint< Real >::OPT, and ROL::InteriorPoint::CompositeConstraint< Real >::SLACK.
|
inlinevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
[out] | ajv | is the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector |
[in] | v | is a dual constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::EqualityConstraint< Real >.
Definition at line 404 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::eqcon_, ROL::InteriorPoint::CompositeConstraint< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::CompositeConstraint< Real >::hasEquality_, ROL::InteriorPoint::CompositeConstraint< Real >::incon_, ROL::InteriorPoint::CompositeConstraint< Real >::INEQ, ROL::InteriorPoint::CompositeConstraint< Real >::OPT, and ROL::InteriorPoint::CompositeConstraint< Real >::SLACK.
|
inlinevirtual |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).
[out] | ahuv | is the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector |
[in] | u | is the direction vector; a dual constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \( \mathsf{ahuv} = c''(x)(v,\cdot)^*u \), where \(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation based on the adjoint Jacobian.
Reimplemented from ROL::EqualityConstraint< Real >.
Definition at line 441 of file ROL_InteriorPoint.hpp.
References ROL::InteriorPoint::CompositeConstraint< Real >::eqcon_, ROL::InteriorPoint::CompositeConstraint< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::CompositeConstraint< Real >::hasEquality_, ROL::InteriorPoint::CompositeConstraint< Real >::incon_, ROL::InteriorPoint::CompositeConstraint< Real >::INEQ, ROL::InteriorPoint::CompositeConstraint< Real >::OPT, and ROL::InteriorPoint::CompositeConstraint< Real >::SLACK.
|
staticprivate |
Definition at line 305 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
staticprivate |
Definition at line 306 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
staticprivate |
Definition at line 308 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
staticprivate |
Definition at line 309 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
private |
Definition at line 311 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
private |
Definition at line 312 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
private |
Definition at line 314 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
private |
Definition at line 315 of file ROL_InteriorPoint.hpp.
Referenced by ROL::InteriorPoint::CompositeConstraint< Real >::getNumberConstraintEvaluations(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().