ROL
|
Provides a unique argument for inequality constraints using std::vector types, which otherwise behave exactly as equality constraints. More...
#include <ROL_StdInequalityConstraint.hpp>
Public Member Functions | |
void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
void | value (V &c, const V &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
void | applyAdjointJacobian (V &aju, const V &u, const V &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
void | applyAdjointHessian (V &ahuv, const V &u, const V &v, const V &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
![]() | |
virtual | ~StdEqualityConstraint () |
virtual void | update (const std::vector< Real > &x, bool flag=true, int iter=-1) |
virtual void | value (std::vector< Real > &c, const std::vector< Real > &x, Real &tol)=0 |
virtual void | applyJacobian (std::vector< Real > &jv, const std::vector< Real > v, const std::vector< Real > &x, Real &tol) |
virtual void | applyAdjointJacobian (std::vector< Real > &ajv, const std::vector< Real > v, const std::vector< Real > &x, Real &tol) |
virtual void | applyAdjointHessian (std::vector< Real > &ahuv, const std::vector< Real > &u, const std::vector< Real > &v, const std::vector< Real > &x, Real &tol) |
virtual std::vector< Real > | solveAugmentedSystem (std::vector< Real > &v1, std::vector< Real > &v2, const std::vector< Real > &b1, const std::vector< Real > &b2, const std::vector< Real > &x, Real tol) |
virtual void | applyPreconditioner (std::vector< Real > &pv, const std::vector< Real > &v, const std::vector< Real > &x, const std::vector< Real > &g, Real &tol) |
![]() | |
virtual | ~EqualityConstraint () |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
EqualityConstraint (void) | |
virtual bool | isFeasible (const Vector< Real > &v) |
Check if the vector, v, is feasible. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef StdEqualityConstraint < Real > | StdEC |
typedef Vector< Real > | V |
Additional Inherited Members | |
![]() | |
const std::vector< Real > | getParameter (void) const |
Provides a unique argument for inequality constraints using std::vector types, which otherwise behave exactly as equality constraints.
Definition at line 58 of file ROL_StdInequalityConstraint.hpp.
|
private |
Definition at line 61 of file ROL_StdInequalityConstraint.hpp.
|
private |
Definition at line 62 of file ROL_StdInequalityConstraint.hpp.
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 67 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::update().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 72 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::value().
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
[out] | jv | is the result of applying the constraint Jacobian to v at x; a constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{jv} = c'(x)v\), where \(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 77 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::applyJacobian().
|
inlinevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
[out] | ajv | is the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector |
[in] | v | is a dual constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 82 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::applyAdjointJacobian().
|
inlinevirtual |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).
[out] | ahuv | is the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector |
[in] | u | is the direction vector; a dual constraint-space vector |
[in] | v | is an optimization-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \( \mathsf{ahuv} = c''(x)(v,\cdot)^*u \), where \(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation based on the adjoint Jacobian.
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 87 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::applyAdjointHessian().
|
inlinevirtual |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]
where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator.
[out] | v1 | is the optimization-space component of the result |
[out] | v2 | is the dual constraint-space component of the result |
[in] | b1 | is the dual optimization-space component of the right-hand side |
[in] | b2 | is the constraint-space component of the right-hand side |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is the nominal relative residual tolerance |
On return, \( [\mathsf{v1} \,\, \mathsf{v2}] \) approximately solves the augmented system, where the size of the residual is governed by special stopping conditions.
The default implementation is the preconditioned generalized minimal residual (GMRES) method, which enables the use of nonsymmetric preconditioners.
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 93 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::solveAugmentedSystem().
|
inlinevirtual |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]
where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method.
[out] | pv | is the result of applying the constraint preconditioner to v at x; a dual constraint-space vector |
[in] | v | is a constraint-space vector |
[in] | x | is the preconditioner argument; an optimization-space vector |
[in] | g | is the preconditioner argument; a dual optimization-space vector, unused |
[in,out] | tol | is a tolerance for inexact evaluations |
On return, \(\mathsf{pv} = P(x)v\), where \(v \in \mathcal{C}\), \(\mathsf{pv} \in \mathcal{C}^*\).
The default implementation is the Riesz map in \(L(\mathcal{C}, \mathcal{C}^*)\).
Reimplemented from ROL::StdEqualityConstraint< Real >.
Definition at line 100 of file ROL_StdInequalityConstraint.hpp.
References ROL::StdEqualityConstraint< Real >::applyPreconditioner().