ROL
Public Member Functions | Private Types | List of all members
ROL::StdInequalityConstraint< Real > Class Template Reference

Provides a unique argument for inequality constraints using std::vector types, which otherwise behave exactly as equality constraints. More...

#include <ROL_StdInequalityConstraint.hpp>

+ Inheritance diagram for ROL::StdInequalityConstraint< Real >:

Public Member Functions

void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (V &c, const V &x, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (V &jv, const V &v, const V &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void applyAdjointJacobian (V &aju, const V &u, const V &x, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointHessian (V &ahuv, const V &u, const V &v, const V &x, Real &tol)
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
- Public Member Functions inherited from ROL::StdEqualityConstraint< Real >
virtual ~StdEqualityConstraint ()
 
virtual void update (const std::vector< Real > &x, bool flag=true, int iter=-1)
 
virtual void value (std::vector< Real > &c, const std::vector< Real > &x, Real &tol)=0
 
virtual void applyJacobian (std::vector< Real > &jv, const std::vector< Real > v, const std::vector< Real > &x, Real &tol)
 
virtual void applyAdjointJacobian (std::vector< Real > &ajv, const std::vector< Real > v, const std::vector< Real > &x, Real &tol)
 
virtual void applyAdjointHessian (std::vector< Real > &ahuv, const std::vector< Real > &u, const std::vector< Real > &v, const std::vector< Real > &x, Real &tol)
 
virtual std::vector< Real > solveAugmentedSystem (std::vector< Real > &v1, std::vector< Real > &v2, const std::vector< Real > &b1, const std::vector< Real > &b2, const std::vector< Real > &x, Real tol)
 
virtual void applyPreconditioner (std::vector< Real > &pv, const std::vector< Real > &v, const std::vector< Real > &x, const std::vector< Real > &g, Real &tol)
 
- Public Member Functions inherited from ROL::EqualityConstraint< Real >
virtual ~EqualityConstraint ()
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
 EqualityConstraint (void)
 
virtual bool isFeasible (const Vector< Real > &v)
 Check if the vector, v, is feasible. More...
 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Types

typedef StdEqualityConstraint
< Real > 
StdEC
 
typedef Vector< Real > V
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::EqualityConstraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class ROL::StdInequalityConstraint< Real >

Provides a unique argument for inequality constraints using std::vector types, which otherwise behave exactly as equality constraints.

Definition at line 58 of file ROL_StdInequalityConstraint.hpp.

Member Typedef Documentation

template<class Real >
typedef StdEqualityConstraint<Real> ROL::StdInequalityConstraint< Real >::StdEC
private

Definition at line 61 of file ROL_StdInequalityConstraint.hpp.

template<class Real >
typedef Vector<Real> ROL::StdInequalityConstraint< Real >::V
private

Definition at line 62 of file ROL_StdInequalityConstraint.hpp.

Member Function Documentation

template<class Real >
void ROL::StdInequalityConstraint< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
inlinevirtual

Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.

Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 67 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::update().

template<class Real >
void ROL::StdInequalityConstraint< Real >::value ( V c,
const V x,
Real &  tol 
)
inlinevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 72 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::value().

template<class Real >
void ROL::StdInequalityConstraint< Real >::applyJacobian ( V jv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

Parameters
[out]jvis the result of applying the constraint Jacobian to v at x; a constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{jv} = c'(x)v\), where \(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 77 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::applyJacobian().

template<class Real >
void ROL::StdInequalityConstraint< Real >::applyAdjointJacobian ( V ajv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

Parameters
[out]ajvis the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector
[in]vis a dual constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 82 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::applyAdjointJacobian().

template<class Real >
void ROL::StdInequalityConstraint< Real >::applyAdjointHessian ( V ahuv,
const V u,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

Parameters
[out]ahuvis the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector
[in]uis the direction vector; a dual constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \( \mathsf{ahuv} = c''(x)(v,\cdot)^*u \), where \(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 87 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::applyAdjointHessian().

template<class Real >
std::vector<Real> ROL::StdInequalityConstraint< Real >::solveAugmentedSystem ( Vector< Real > &  v1,
Vector< Real > &  v2,
const Vector< Real > &  b1,
const Vector< Real > &  b2,
const Vector< Real > &  x,
Real &  tol 
)
inlinevirtual

Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator.

Parameters
[out]v1is the optimization-space component of the result
[out]v2is the dual constraint-space component of the result
[in]b1is the dual optimization-space component of the right-hand side
[in]b2is the constraint-space component of the right-hand side
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis the nominal relative residual tolerance

On return, \( [\mathsf{v1} \,\, \mathsf{v2}] \) approximately solves the augmented system, where the size of the residual is governed by special stopping conditions.

The default implementation is the preconditioned generalized minimal residual (GMRES) method, which enables the use of nonsymmetric preconditioners.


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 93 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::solveAugmentedSystem().

template<class Real >
void ROL::StdInequalityConstraint< Real >::applyPreconditioner ( Vector< Real > &  pv,
const Vector< Real > &  v,
const Vector< Real > &  x,
const Vector< Real > &  g,
Real &  tol 
)
inlinevirtual

Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method.

Parameters
[out]pvis the result of applying the constraint preconditioner to v at x; a dual constraint-space vector
[in]vis a constraint-space vector
[in]xis the preconditioner argument; an optimization-space vector
[in]gis the preconditioner argument; a dual optimization-space vector, unused
[in,out]tolis a tolerance for inexact evaluations

On return, \(\mathsf{pv} = P(x)v\), where \(v \in \mathcal{C}\), \(\mathsf{pv} \in \mathcal{C}^*\).

The default implementation is the Riesz map in \(L(\mathcal{C}, \mathcal{C}^*)\).


Reimplemented from ROL::StdEqualityConstraint< Real >.

Definition at line 100 of file ROL_StdInequalityConstraint.hpp.

References ROL::StdEqualityConstraint< Real >::applyPreconditioner().


The documentation for this class was generated from the following file: