ROL
|
Express the Primal-Dual Interior Point gradient as an equality constraint. More...
#include <ROL_InteriorPointPrimalDualResidual.hpp>
Public Member Functions | |
PrimalDualResidual (const ROL::Ptr< OBJ > &obj, const ROL::Ptr< CON > &eqcon, const ROL::Ptr< CON > &incon, const V &x) | |
void | value (V &c, const V &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
void | updatePenalty (Real mu) |
PrimalDualResidual (const ROL::Ptr< OBJ > &obj, const ROL::Ptr< CON > &eqcon, const ROL::Ptr< CON > &incon, const V &x) | |
void | value (V &c, const V &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
void | updatePenalty (Real mu) |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef Vector< Real > | V |
typedef PartitionedVector< Real > | PV |
typedef Objective< Real > | OBJ |
typedef Constraint< Real > | CON |
typedef PV::size_type | size_type |
typedef Vector< Real > | V |
typedef PartitionedVector< Real > | PV |
typedef Objective< Real > | OBJ |
typedef Constraint< Real > | CON |
typedef PV::size_type | size_type |
Private Attributes | |
ROL::Ptr< OBJ > | obj_ |
ROL::Ptr< CON > | eqcon_ |
ROL::Ptr< CON > | incon_ |
ROL::Ptr< V > | qo_ |
ROL::Ptr< V > | qs_ |
ROL::Ptr< V > | qe_ |
ROL::Ptr< V > | qi_ |
Real | mu_ |
ROL::Ptr< LinearOperator< Real > > | sym_ |
Static Private Attributes | |
static const size_type | OPT = 0 |
static const size_type | SLACK = 1 |
static const size_type | EQUAL = 2 |
static const size_type | INEQ = 3 |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Express the Primal-Dual Interior Point gradient as an equality constraint.
See Nocedal & Wright second edition equation (19.6) In that book the convention for naming components x - optimization variable (here subscript o) s - slack variable (here subscript s) y - Lagrange multiplier for the equality constraint (here subscript e) z - Lagrange multiplier for the inequality constraint (here subscript i)
Definition at line 42 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 45 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 46 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 47 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 48 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 51 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 45 of file ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 46 of file ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 47 of file ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 48 of file ROL_InteriorPointPrimalDualResidual.hpp.
|
private |
Definition at line 51 of file ROL_InteriorPointPrimalDualResidual.hpp.
|
inline |
Definition at line 75 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qe_, ROL::InteriorPoint::PrimalDualResidual< Real >::qi_, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, and ROL::InteriorPoint::PrimalDualResidual< Real >::sym_.
|
inline |
Definition at line 75 of file ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qe_, ROL::InteriorPoint::PrimalDualResidual< Real >::qi_, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, and ROL::InteriorPoint::PrimalDualResidual< Real >::sym_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::Constraint< Real >.
Definition at line 93 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::eqcon_, ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::incon_, ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::mu_, ROL::InteriorPoint::PrimalDualResidual< Real >::obj_, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, ROL::InteriorPoint::PrimalDualResidual< Real >::sym_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#91, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 147 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::eqcon_, ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::incon_, ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::obj_, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, ROL::InteriorPoint::PrimalDualResidual< Real >::sym_, and ROL::Vector< Real >::zero().
|
inline |
Definition at line 222 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::mu_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::Constraint< Real >.
Definition at line 93 of file ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::eqcon_, ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::incon_, ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::mu_, ROL::InteriorPoint::PrimalDualResidual< Real >::obj_, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, ROL::InteriorPoint::PrimalDualResidual< Real >::sym_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#91, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 147 of file ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::eqcon_, ROL::InteriorPoint::PrimalDualResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::InteriorPoint::PrimalDualResidual< Real >::incon_, ROL::InteriorPoint::PrimalDualResidual< Real >::INEQ, ROL::InteriorPoint::PrimalDualResidual< Real >::obj_, ROL::InteriorPoint::PrimalDualResidual< Real >::OPT, ROL::InteriorPoint::PrimalDualResidual< Real >::qo_, ROL::InteriorPoint::PrimalDualResidual< Real >::qs_, ROL::InteriorPoint::PrimalDualResidual< Real >::SLACK, ROL::InteriorPoint::PrimalDualResidual< Real >::sym_, and ROL::Vector< Real >::zero().
|
inline |
Definition at line 220 of file ROL_InteriorPointPrimalDualResidual.hpp.
References ROL::InteriorPoint::PrimalDualResidual< Real >::mu_.
|
private |
Definition at line 53 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), and ROL::InteriorPoint::PrimalDualResidual< Real >::value().
|
private |
Definition at line 54 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), and ROL::InteriorPoint::PrimalDualResidual< Real >::value().
|
private |
Definition at line 55 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), and ROL::InteriorPoint::PrimalDualResidual< Real >::value().
|
private |
|
private |
|
private |
Definition at line 59 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::PrimalDualResidual().
|
private |
Definition at line 60 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::PrimalDualResidual().
|
private |
Definition at line 62 of file interiorpoint/ROL_InteriorPointPrimalDualResidual.hpp.
Referenced by ROL::InteriorPoint::PrimalDualResidual< Real >::updatePenalty(), and ROL::InteriorPoint::PrimalDualResidual< Real >::value().
|
private |
|
staticprivate |
|
staticprivate |
|
staticprivate |
|
staticprivate |