ROL
|
#include <example_01.hpp>
Public Member Functions | |
Normalization_Constraint (int n, Real dx) | |
void | value (Vector< Real > &c, const Vector< Real > &psi, Real &tol) |
Evaluate \(c[\psi]\). More... | |
void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \(c'[\psi]v\). More... | |
void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \((c'[\psi])^\ast v\). More... | |
void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \(((c''[\psi])^\ast v)u\). More... | |
Normalization_Constraint (int n, Real dx, ROL::Ptr< FiniteDifference< Real > > fd, bool exactsolve) | |
void | value (Vector< Real > &c, const Vector< Real > &psi, Real &tol) |
Evaluate \(c[\psi]\). More... | |
void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \(c'[\psi]v\). More... | |
void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \((c'[\psi])^\ast v\). More... | |
void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &psi, Real &tol) |
Evaluate \(((c''[\psi])^\ast v)u\). More... | |
std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &psi, Real &tol) |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef std::vector< Real > | vector |
typedef Vector< Real > | V |
typedef StdVector< Real > | SV |
typedef vector::size_type | uint |
typedef std::vector< Real > | vector |
typedef vector::size_type | uint |
Private Member Functions | |
ROL::Ptr< const vector > | getVector (const V &x) |
ROL::Ptr< vector > | getVector (V &x) |
Private Attributes | |
uint | nx_ |
Real | dx_ |
ROL::Ptr< FiniteDifference < Real > > | fd_ |
bool | exactsolve_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Constraint class
Definition at line 203 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 205 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 206 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 207 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 209 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 563 of file gross-pitaevskii/example_02.hpp.
|
private |
Definition at line 564 of file gross-pitaevskii/example_02.hpp.
|
inline |
Definition at line 227 of file gross-pitaevskii/example_01.hpp.
|
inline |
Definition at line 573 of file gross-pitaevskii/example_02.hpp.
|
inlineprivate |
Definition at line 216 of file gross-pitaevskii/example_01.hpp.
|
inlineprivate |
Definition at line 221 of file gross-pitaevskii/example_01.hpp.
|
inlinevirtual |
Evaluate \(c[\psi]\).
\[ c[\psi]= \int\limits_0^1 |\psi|^2\,\mathrm{d}x - 1 \]
where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences. This constraint is a scalar
Implements ROL::Constraint< Real >.
Definition at line 234 of file gross-pitaevskii/example_01.hpp.
|
inlinevirtual |
Evaluate \(c'[\psi]v\).
\[ c'[\psi]v= 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]
The action of the Jacobian on a vector produces a scalar
Reimplemented from ROL::Constraint< Real >.
Definition at line 253 of file gross-pitaevskii/example_01.hpp.
|
inlinevirtual |
Evaluate \((c'[\psi])^\ast v\).
\[ (c'[\psi])^\ast v = 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]
The action of the Jacobian adjoint on a scalar produces a vector
Reimplemented from ROL::Constraint< Real >.
Definition at line 275 of file gross-pitaevskii/example_01.hpp.
|
inlinevirtual |
Evaluate \(((c''[\psi])^\ast v)u\).
\[ ((c''[\psi])^\ast v)u = 2 v u \]
The action of the Hessian adjoint on a on a vector v in a direction u produces a vector of the same size as \(\psi\)
Reimplemented from ROL::Constraint< Real >.
Definition at line 297 of file gross-pitaevskii/example_01.hpp.
|
inlinevirtual |
Evaluate \(c[\psi]\).
\[ c[\psi]= \int\limits_0^1 |\psi|^2\,\mathrm{d}x - 1 \]
where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences. This constraint is a scalar
Implements ROL::Constraint< Real >.
Definition at line 581 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Evaluate \(c'[\psi]v\).
\[ c'[\psi]v= 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]
The action of the Jacobian on a vector produces a scalar
Reimplemented from ROL::Constraint< Real >.
Definition at line 600 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Evaluate \((c'[\psi])^\ast v\).
\[ (c'[\psi])^\ast v = 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]
The action of the Jacobian adjoint on a scalar produces a vector
Reimplemented from ROL::Constraint< Real >.
Definition at line 622 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Evaluate \(((c''[\psi])^\ast v)u\).
\[ ((c''[\psi])^\ast v)u = 2 v u \]
The action of the Hessian adjoint on a on a vector v in a direction u produces a vector of the same size as \(\psi\)
Reimplemented from ROL::Constraint< Real >.
Definition at line 644 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Solve the system
\[ \begin{\pmatrix} K & c'^\ast(\psi)\\ c'(\psi) & 0 \end{pmatrix} \begin{pmatrix} v_1\\v_2 \end{pmatrix}=\begin{pmatrix} b_1\\b_2\end{pmatrix}\]
In this example, \(K\) is the finite difference Laplacian the constraint is a scalar and the Jacobian is a vector and the exact inverse can be computed using the Schur complement method
Reimplemented from ROL::Constraint< Real >.
Definition at line 672 of file gross-pitaevskii/example_02.hpp.
References ROL::Vector< Real >::plus(), ROL::Vector< Real >::scale(), ROL::Vector< Real >::set(), and ROL::Constraint< Real >::solveAugmentedSystem().
|
private |
Definition at line 213 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 214 of file gross-pitaevskii/example_01.hpp.
|
private |
Definition at line 569 of file gross-pitaevskii/example_02.hpp.
|
private |
Definition at line 570 of file gross-pitaevskii/example_02.hpp.