 Intrepid2 | |
  Experimental | |
   LagrangianInterpolation | A class providing static members to perform Lagrangian interpolation on a finite element |
   computeDofCoordsAndCoeffs | |
   ProjectionStruct | An helper class to compute the evaluation points and weights needed for performing projections |
   ProjectionTools | A class providing static members to perform projection-based interpolations: |
    ElemSystem | Class to solve a square system A x = b on each cell A is expected to be saddle a point (KKT) matrix of the form [C B; B^T 0], where C has size nxn and B nxm, with n>0, m>=0. B^T is copied from B, so one does not have to define the B^T portion of A. b will contain the solution x. The first n-entries of x are copied into the provided basis coefficients using the provided indexing. The system is solved either with a QR factorization implemented in KokkosKernels or with Lapack GELS function |
   ComputeBasisCoeffsOnEdges_HCurl | |
   ComputeBasisCoeffsOnFaces_HCurl | |
   ComputeBasisCoeffsOnCell_HCurl | |
   ComputeBasisCoeffsOnSides_HDiv | |
   ComputeBasisCoeffsOnCells_HDiv | |
   ComputeHCurlBasisCoeffsOnCells_HDiv | |
   ComputeBasisCoeffsOnVertices_HGRAD | |
   ComputeBasisCoeffsOnEdges_HGRAD | |
   ComputeBasisCoeffsOnFaces_HGRAD | |
   ComputeBasisCoeffsOnCells_HGRAD | |
   ComputeBasisCoeffsOnVertices_L2 | |
   ComputeBasisCoeffsOnEdges_L2 | |
   ComputeBasisCoeffsOnFaces_L2 | |
   ComputeBasisCoeffsOnCells_L2 | |
  FunctorArrayTools | |
   F_clone | Functor for clone see Intrepid2::ArrayTools for more |
   F_contractFieldField | Functor to contractFieldField see Intrepid2::ArrayTools for more |
   F_contractDataField | Functor to contractDataField see Intrepid2::ArrayTools for more |
   F_contractDataData | Functor to contractDataData see Intrepid2::ArrayTools for more |
   F_dotMultiply | Functor for dotMultiply see Intrepid2::ArrayTools for more |
   F_scalarMultiply | Functor for scalarMultiply see Intrepid2::ArrayTools for more |
   F_crossProduct | Functor for crossProduct see Intrepid2::ArrayTools for more |
   F_outerProduct | Functor for outerProduct see Intrepid2::ArrayTools for more |
   F_matvecProduct | Functor for matvecProduct see Intrepid2::ArrayTools for more |
   F_matmatProduct | Functor for matmatProduct see Intrepid2::ArrayTools for more |
  FunctorCellTools | |
   F_getSubcvCoords_Polygon2D | Functor for calculation of sub-control volume coordinates on polygons see Intrepid2::CellTools for more |
   F_getSubcvCoords_Hexahedron | Functor for calculation of sub-control volume coordinates on hexahedra see Intrepid2::CellTools for more |
   F_getSubcvCoords_Tetrahedron | Functor for calculation of sub-control volume coordinates on tetrahedra see Intrepid2::CellTools for more |
   F_setJacobian | Functor for calculation of Jacobian on cell workset see Intrepid2::CellTools for more |
   F_mapToPhysicalFrame | Functor for mapping reference points to physical frame see Intrepid2::CellTools for more |
  FunctorFunctionSpaceTools | |
   F_HGRADtransformGRAD | Functor for calculation HGRADtransformGRAD, see Intrepid2::FunctionSpaceTools for more |
   F_computeCellMeasure | Functor for calculation of cell measure, see Intrepid2::FunctionSpaceTools for more |
   F_applyLeftFieldSigns | Functor for applyLeftFieldSigns, see Intrepid2::FunctionSpaceTools for more |
   F_applyRightFieldSigns | Functor for applyRightFieldSigns, see Intrepid2::FunctionSpaceTools for more |
   F_applyFieldSigns | Functor for applyFieldSigns, see Intrepid2::FunctionSpaceTools for more |
   F_evaluate | Functor to evaluate functions, see Intrepid2::FunctionSpaceTools for more |
  FunctorRealSpaceTools | |
   F_extractScalarValues | Functor for extractScalarValues see Intrepid2::RealSpaceTools for more |
   F_clone | Functor for clone see Intrepid2::RealSpaceTools for more |
   F_absval | Functor to compute absolute value see Intrepid2::RealSpaceTools for more |
   F_vectorNorm | Functor to compute vector norm see Intrepid2::RealSpaceTools for more |
   F_transpose | Functor to compute transpose see Intrepid2::RealSpaceTools for more |
   F_inverse | Functor to compute inverse see Intrepid2::RealSpaceTools for more |
   F_det | Functor to compute determinant see Intrepid2::RealSpaceTools for more |
   F_add | Functor to add md arrays see Intrepid2::RealSpaceTools for more |
   F_subtract | Functor to subtract md arrays see Intrepid2::RealSpaceTools for more |
   F_scale | Functor to scale md arrays see Intrepid2::RealSpaceTools for more |
   F_dot | Functor to compute dot product see Intrepid2::RealSpaceTools for more |
   F_matvec | Functor to compute matvec see Intrepid2::RealSpaceTools for more |
   F_vecprod | Functor to compute vecprod see Intrepid2::RealSpaceTools for more |
  Impl | |
   CellTools | See Intrepid2::CellTools |
    ReferenceNodeDataType | |
    Serial | |
    SubcellParamDataType | |
   Line | |
   Line< 2 > | Line topology, 2 nodes |
   Line< 3 > | Line topology, 3 nodes |
   Triangle | |
   Triangle< 3 > | Triangle topology, 3 nodes |
   Triangle< 4 > | Triangle topology, 4 nodes |
   Triangle< 6 > | Triangle topology, 6 nodes |
   Quadrilateral | |
   Quadrilateral< 4 > | Quadrilateral topology, 4 nodes |
   Quadrilateral< 8 > | Quadrilateral topology, 8 nodes |
   Quadrilateral< 9 > | Quadrilateral topology, 9 nodes |
   Tetrahedron | |
   Tetrahedron< 4 > | Tetrahedron topology, 4 nodes |
   Tetrahedron< 8 > | Tetrahedron topology, 8 nodes |
   Tetrahedron< 10 > | Tetrahedron topology, 10 nodes |
   Tetrahedron< 11 > | Tetrahedron topology, 11 nodes |
   Hexahedron | |
   Hexahedron< 8 > | Hexahedron topology, 8 nodes |
   Hexahedron< 20 > | Hexahedron topology, 20 nodes |
   Hexahedron< 27 > | Hexahedron topology, 27 nodes |
   Pyramid | |
   Pyramid< 5 > | Pyramid topology, 5 nodes |
   Pyramid< 13 > | Pyramid topology, 13 nodes |
   Pyramid< 14 > | Pyramid topology, 14 nodes |
   Wedge | |
   Wedge< 6 > | Wedge topology, 6 nodes |
   Wedge< 15 > | Wedge topology, 15 nodes |
   Wedge< 18 > | Wedge topology, 18 nodes |
   Basis_HCURL_HEX_I1_FEM | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
    Functor | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
    Serial | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
   Basis_HCURL_HEX_In_FEM | See Intrepid2::Basis_HCURL_HEX_In_FEM |
    Functor | See Intrepid2::Basis_HCURL_HEX_In_FEM |
    Serial | See Intrepid2::Basis_HCURL_HEX_In_FEM |
   Basis_HCURL_QUAD_I1_FEM | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
    Functor | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
    Serial | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
   Basis_HCURL_QUAD_In_FEM | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
    Functor | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
    Serial | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
   Basis_HCURL_TET_I1_FEM | See Intrepid2::Basis_HCURL_TET_I1_FEM |
    Functor | See Intrepid2::Basis_HCURL_TET_I1_FEM |
    Serial | See Intrepid2::Basis_HCURL_TET_I1_FEM |
   Basis_HCURL_TET_In_FEM | See Intrepid2::Basis_HCURL_TET_In_FEM |
    Functor | See Intrepid2::Basis_HCURL_TET_In_FEM |
    Serial | See Intrepid2::Basis_HCURL_TET_In_FEM |
   Basis_HCURL_TRI_I1_FEM | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
    Functor | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
    Serial | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
   Basis_HCURL_TRI_In_FEM | See Intrepid2::Basis_HCURL_TRI_In_FEM |
    Functor | See Intrepid2::Basis_HCURL_TRI_In_FEM |
    Serial | See Intrepid2::Basis_HCURL_TRI_In_FEM |
   Basis_HCURL_WEDGE_I1_FEM | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
    Functor | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
    Serial | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
   Basis_HDIV_HEX_I1_FEM | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
    Functor | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
    Serial | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
   Basis_HDIV_HEX_In_FEM | See Intrepid2::Basis_HDIV_HEX_In_FEM |
    Functor | See Intrepid2::Basis_HDIV_HEX_In_FEM |
    Serial | See Intrepid2::Basis_HDIV_HEX_In_FEM |
   Basis_HDIV_QUAD_I1_FEM | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
    Functor | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
    Serial | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
   Basis_HDIV_QUAD_In_FEM | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
    Functor | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
    Serial | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
   Basis_HDIV_TET_I1_FEM | See Intrepid2::Basis_HDIV_TET_I1_FEM |
    Functor | See Intrepid2::Basis_HDIV_TET_I1_FEM |
    Serial | See Intrepid2::Basis_HDIV_TET_I1_FEM |
   Basis_HDIV_TET_In_FEM | See Intrepid2::Basis_HDIV_TET_In_FEM |
    Functor | See Intrepid2::Basis_HDIV_TET_In_FEM |
    Serial | See Intrepid2::Basis_HDIV_TET_In_FEM |
   Basis_HDIV_TRI_I1_FEM | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
    Functor | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
    Serial | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
   Basis_HDIV_TRI_In_FEM | See Intrepid2::Basis_HDIV_TRI_In_FEM |
    Functor | See Intrepid2::Basis_HDIV_TRI_In_FEM |
    Serial | See Intrepid2::Basis_HDIV_TRI_In_FEM |
   Basis_HDIV_WEDGE_I1_FEM | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
    Functor | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
    Serial | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
   Basis_HGRAD_HEX_C1_FEM | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
   Basis_HGRAD_HEX_C2_FEM | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
    Functor | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
    Serial | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
   Basis_HGRAD_HEX_Cn_FEM | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
    Functor | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
    Serial | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
   Basis_HGRAD_LINE_C1_FEM | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
   Basis_HGRAD_LINE_Cn_FEM | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
    Functor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
    Serial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
   Basis_HGRAD_LINE_Cn_FEM_JACOBI | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
    Functor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
    Serial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
   Basis_HGRAD_PYR_C1_FEM | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
   Basis_HGRAD_QUAD_C1_FEM | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
   Basis_HGRAD_QUAD_C2_FEM | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
    Functor | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
    Serial | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
   Basis_HGRAD_QUAD_Cn_FEM | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
    Functor | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
    Serial | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
   Basis_HGRAD_TET_C1_FEM | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
   Basis_HGRAD_TET_C2_FEM | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
   Basis_HGRAD_TET_Cn_FEM | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
   OrthPolynomialTet | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
   OrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
   OrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
   Basis_HGRAD_TET_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
    Functor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
    Serial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
   Basis_HGRAD_TET_COMP12_FEM | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
   Basis_HGRAD_TRI_C1_FEM | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
   Basis_HGRAD_TRI_C2_FEM | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
   Basis_HGRAD_TRI_Cn_FEM | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
    Functor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
    Serial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
   OrthPolynomialTri | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
   OrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
   OrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
   Basis_HGRAD_TRI_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
    Functor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
    Serial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
   Basis_HGRAD_WEDGE_C1_FEM | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
    Functor | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
    Serial | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
   Basis_HGRAD_WEDGE_C2_FEM | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
    Functor | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
    Serial | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
   Basis_HVOL_C0_FEM | See Intrepid2::Basis_HVOL_C0_FEM |
    Functor | See Intrepid2::Basis_HVOL_C0_FEM |
    Serial | See Intrepid2::Basis_HVOL_C0_FEM |
   Basis_HVOL_HEX_Cn_FEM | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
    Functor | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
    Serial | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
   Basis_HVOL_LINE_Cn_FEM | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
    Functor | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
    Serial | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
   Basis_HVOL_QUAD_Cn_FEM | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
    Functor | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
    Serial | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
   Basis_HVOL_TET_Cn_FEM | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
    Functor | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
    Serial | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
   Basis_HVOL_TRI_Cn_FEM | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
    Functor | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
    Serial | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
   OrientationTools | Tools to compute orientations for degrees-of-freedom |
  Kernels | |
   Serial | |
  CellTools | A stateless class for operations on cell data. Provides methods for: |
   ReferenceNodeData | Reference node data for each supported topology |
   ReferenceNodeDataStatic | Reference node containers for each supported topology |
   SubcellParamData | Parametrization coefficients of edges and faces of reference cells |
  TensorTopologyMap | For two cell topologies whose tensor product is a third, this class establishes a mapping from subcell pairs in the component topologies to the tensor product topology |
  Basis | An abstract base class that defines interface for concrete basis implementations for Finite Element (FEM) and Finite Volume/Finite Difference (FVD) discrete spaces |
  Basis_Derived_HCURL_Family1_HEX | |
  Basis_Derived_HCURL_Family2_HEX | |
  Basis_Derived_HCURL_Family3_HEX | |
  Basis_Derived_HCURL_Family1_Family2_HEX | |
  Basis_Derived_HCURL_HEX | |
  Basis_Derived_HCURL_Family1_QUAD | |
  Basis_Derived_HCURL_Family2_QUAD | |
  Basis_Derived_HCURL_QUAD | |
  Basis_Derived_HDIV_Family1_HEX | |
  Basis_Derived_HDIV_Family2_HEX | |
  Basis_Derived_HDIV_Family3_HEX | |
  Basis_Derived_HDIV_Family3_Family1_HEX | |
  Basis_Derived_HDIV_HEX | |
  Basis_Derived_HDIV_Family1_QUAD | |
  Basis_Derived_HDIV_Family2_QUAD | |
  Basis_Derived_HDIV_QUAD | |
  Basis_Derived_HGRAD_HEX | |
  Basis_Derived_HGRAD_QUAD | |
  Basis_Derived_HVOL_HEX | |
  Basis_Derived_HVOL_QUAD | Implementation of H(vol) basis on the quadrilateral that is templated on H(vol) on the line |
  EmptyBasisFamily | EmptyBasisFamily allows us to set a default void family for a given topology |
  DerivedBasisFamily | A family of basis functions, constructed from H(vol) and H(grad) bases on the line |
  Basis_DirectSumBasis | A basis that is the direct sum of two other bases |
  Basis_HCURL_HEX_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Hexahedron cell |
  Basis_HCURL_HEX_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Hexahedron cell |
  Basis_HCURL_QUAD_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Quadrilateral cell |
  Basis_HCURL_QUAD_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Quadrilateral cell |
  Basis_HCURL_TET_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Tetrahedron cell |
  Basis_HCURL_TET_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Tetrahedron cell |
  Basis_HCURL_TRI_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Triangle cell |
  Basis_HCURL_TRI_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Triangle cell |
  Basis_HCURL_WEDGE_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Wedge cell |
  Basis_HDIV_HEX_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedron cell |
   Serial | |
  Basis_HDIV_HEX_In_FEM | Implementation of the default H(div)-compatible FEM basis on Hexahedron cell |
  Basis_HDIV_QUAD_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell |
  Basis_HDIV_QUAD_In_FEM | Implementation of the default H(div)-compatible FEM basis on Quadrilateral cell |
  Basis_HDIV_TET_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Tetrahedron cell |
  Basis_HDIV_TET_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Tetrahedral cells |
  Basis_HDIV_TRI_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Triangle cell |
  Basis_HDIV_TRI_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Triangle cell |
  Basis_HDIV_WEDGE_I1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
  Basis_HGRAD_HEX_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Hexahedron cell |
  Basis_HGRAD_HEX_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
  Basis_HGRAD_HEX_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
  Basis_HGRAD_LINE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Line cell |
  Basis_HGRAD_LINE_Cn_FEM | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
  Basis_HGRAD_LINE_Cn_FEM_JACOBI | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Jacobi polynomials |
  Basis_HGRAD_PYR_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Pyramid cell |
  Basis_HGRAD_QUAD_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Quadrilateral cell |
  Basis_HGRAD_QUAD_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Quadrilateral cell |
  Basis_HGRAD_QUAD_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points |
  Basis_HGRAD_TET_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Tetrahedron cell |
  Basis_HGRAD_TET_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
  Basis_HGRAD_TET_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
  Basis_HGRAD_TET_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis of arbitrary degree on tetrahedron |
  Basis_HGRAD_TET_COMP12_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
  Basis_HGRAD_TRI_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Triangle cell |
  Basis_HGRAD_TRI_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Triangle cell |
  Basis_HGRAD_TRI_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Triangle cell |
  Basis_HGRAD_TRI_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis (Dubiner) of arbitrary degree on triangle |
  Basis_HGRAD_WEDGE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
  Basis_HGRAD_WEDGE_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Wedge cell |
  HierarchicalTriangleBasisFamily | |
  HierarchicalTetrahedronBasisFamily | |
  Basis_HVOL_C0_FEM | Implementation of the default HVOL-compatible FEM contstant basis on triangle, quadrilateral, hexahedron and tetrahedron cells |
  Basis_HVOL_HEX_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Hexahedron cell |
  Basis_HVOL_LINE_Cn_FEM | Implementation of the locally HVOL-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
  Basis_HVOL_QUAD_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points. The degrees of freedom are point evaluation at points in the interior of the Quadrilateral |
  Basis_HVOL_TET_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
  Basis_HVOL_TRI_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Triangle cell |
  Hierarchical_HGRAD_LINE_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_LINE class |
  IntegratedLegendreBasis_HGRAD_LINE | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
  Hierarchical_HGRAD_TET_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TET class |
  IntegratedLegendreBasis_HGRAD_TET | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
  Hierarchical_HGRAD_TRI_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TRI class |
  IntegratedLegendreBasis_HGRAD_TRI | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
  Hierarchical_HVOL_LINE_Functor | Functor for computing values for the LegendreBasis_HVOL_LINE class |
  LegendreBasis_HVOL_LINE | Basis defining Legendre basis on the line, a polynomial subspace of L^2 (a.k.a. H(vol)) on the line |
  NodalBasisFamily | A family of nodal basis functions representing the higher-order Lagrangian basis family that Intrepid2 has historically supported |
  TensorViewFunctor | Functor for computing values for the TensorBasis class |
  Basis_TensorBasis | Basis defined as the tensor product of two component bases |
  TensorBasis3_Functor | Functor for computing values for the TensorBasis3 class |
  Basis_TensorBasis3 | |
  FunctionSpaceTools | Defines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities |
  Cubature | Defines the base class for cubature (integration) rules in Intrepid |
  CubatureControlVolume | Defines cubature (integration) rules over control volumes |
   Functor | |
  CubatureControlVolumeBoundary | Defines cubature (integration) rules over Neumann boundaries for control volume method |
   Functor | |
  CubatureControlVolumeSide | Defines cubature (integration) rules over control volumes |
   Functor | |
  CubatureDirect | Defines direct cubature (integration) rules in Intrepid |
   CubatureData | Cubature data is defined on exec space and deep-copied when an object is created |
   CubatureDataStatic | Cubature data is defined on the host space and is static |
  CubatureDirectLineGauss | Defines Gauss integration rules on a line |
  CubatureDirectLineGaussJacobi20 | Defines GaussJacobi20 integration rules on a line used for Pyramid only |
  CubatureDirectTetDefault | Defines direct integration rules on a tetrahedron |
  CubatureDirectTriDefault | Defines direct integration rules on a triangle |
  CubaturePolylib | Utilizes cubature (integration) rules contained in the library Polylib (Spencer Sherwin, Aeronautics, Imperial College London) within Intrepid |
  CubatureTensor | Defines tensor-product cubature (integration) rules in Intrepid |
  CubatureTensorPyr | Defines tensor-product cubature (integration) rules in Intrepid |
   Functor | |
  DefaultCubatureFactory | A factory class that generates specific instances of cubatures |
  Orientation | Orientation encoding and decoding |
  OrientationTools | Tools to compute orientations for degrees-of-freedom |
  F_modifyBasisByOrientation | |
  ArrayTools | Utility class that provides methods for higher-order algebraic manipulation of user-defined arrays, such as tensor contractions. For low-order operations, see Intrepid2::RealSpaceTools |
   Internal | |
  PointTools | Utility class that provides methods for calculating distributions of points on different cells |
  Polylib | Providing orthogonal polynomial calculus and interpolation, created by Spencer Sherwin, Aeronautics, Imperial College London, modified and redistributed by D. Ridzal |
   Serial | |
    Cubature | Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto zeros and weights |
    Derivative | Compute the Derivative Matrix and its transpose associated with the Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto-Jacobi zeros |
    InterpolationOperator | Interpolation Operator from Gauss-Jacobi points to an arbitrary distribution at points zm |
    LagrangianInterpolant | Compute the value of the i th Lagrangian interpolant through the np Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto points zgj at the arbitrary location z |
  RealSpaceTools | Implementation of basic linear algebra functionality in Euclidean space |
   Serial | |
  TensorViewIterator | A helper class that allows iteration over three Kokkos Views simultaneously, according to tensor combination rules: |
  Parameters | Define constants |
  ScalarTraits | Scalar type traits |
  ScalarTraits< float > | Built in support for float |
  ScalarTraits< double > | Built in support for double |
  ScalarTraits< int > | Built in support for int |
  ScalarTraits< long int > | Built in support for long int |
  ScalarTraits< long long > | Built in support for long long |
  ExecSpace | Space overload |
  ExecSpace< ViewSpaceType, void > | Space overload |
  DeduceLayout | Layout deduction (temporary meta-function) |
  Util | Small utility functions |
  NaturalLayoutForType | Define layout that will allow us to wrap Sacado Scalar objects in Views without copying |
  ViewIterator | A helper class that allows iteration over some part of a Kokkos View, while allowing the calling code to remain agnostic as to the rank of the view |
  HierarchicalBasisFamily | A family of hierarchical basis functions, constructed in a way that follows work by Fuentes et al |
  DerivedNodalBasisFamily | A family of nodal basis functions which is related to, but not identical with, the Lagrangian basis family that Intrepid2 has historically supported |