Intrepid2
|
Basis defined as the tensor product of two component bases. More...
#include <Intrepid2_TensorBasis.hpp>
Public Types | |
using | BasisSuper = ::Intrepid2::Basis< typename Basis1::ExecutionSpace, typename Basis1::OutputValueType, typename Basis1::PointValueType > |
using | ExecutionSpace = typename BasisSuper::ExecutionSpace |
using | OutputValueType = typename BasisSuper::OutputValueType |
using | PointValueType = typename BasisSuper::PointValueType |
using | OrdinalTypeArray1DHost = typename BasisSuper::OrdinalTypeArray1DHost |
using | OrdinalTypeArray2DHost = typename BasisSuper::OrdinalTypeArray2DHost |
using | OutputViewType = typename BasisSuper::OutputViewType |
using | PointViewType = typename BasisSuper::PointViewType |
Public Types inherited from Intrepid2::Basis< Basis1::ExecutionSpace, Basis1::OutputValueType, Basis1::PointValueType > | |
using | ExecutionSpace = Basis1::ExecutionSpace |
(Kokkos) Execution space for basis. | |
using | OutputValueType = Basis1::OutputValueType |
Output value type for basis; default is double. | |
using | PointValueType = Basis1::PointValueType |
Point value type for basis; default is double. | |
using | OrdinalViewType = Kokkos::View< ordinal_type, Basis1::ExecutionSpace > |
View type for ordinal. | |
using | EBasisViewType = Kokkos::View< EBasis, Basis1::ExecutionSpace > |
View for basis type. | |
using | ECoordinatesViewType = Kokkos::View< ECoordinates, Basis1::ExecutionSpace > |
View for coordinate system type. | |
using | OrdinalTypeArray1DHost = Kokkos::View< ordinal_type *, typename Basis1::ExecutionSpace::array_layout, Kokkos::HostSpace > |
View type for 1d host array. | |
using | OrdinalTypeArray2DHost = Kokkos::View< ordinal_type **, typename Basis1::ExecutionSpace::array_layout, Kokkos::HostSpace > |
View type for 2d host array. | |
using | OrdinalTypeArray3DHost = Kokkos::View< ordinal_type ***, typename Basis1::ExecutionSpace::array_layout, Kokkos::HostSpace > |
View type for 3d host array. | |
using | OrdinalTypeArrayStride1DHost = Kokkos::View< ordinal_type *, Kokkos::LayoutStride, Kokkos::HostSpace > |
View type for 1d host array. | |
using | OrdinalTypeArray1D = Kokkos::View< ordinal_type *, Basis1::ExecutionSpace > |
View type for 1d device array. | |
using | OrdinalTypeArray2D = Kokkos::View< ordinal_type **, Basis1::ExecutionSpace > |
View type for 2d device array. | |
using | OrdinalTypeArray3D = Kokkos::View< ordinal_type ***, Basis1::ExecutionSpace > |
View type for 3d device array. | |
using | OrdinalTypeArrayStride1D = Kokkos::View< ordinal_type *, Kokkos::LayoutStride, Basis1::ExecutionSpace > |
View type for 1d device array. | |
typedef ScalarTraits < Basis1::PointValueType > ::scalar_type | scalarType |
Scalar type for point values. | |
using | OutputViewType = Kokkos::DynRankView< OutputValueType, Kokkos::LayoutStride, Basis1::ExecutionSpace > |
View type for basis value output. | |
using | PointViewType = Kokkos::DynRankView< PointValueType, Kokkos::LayoutStride, Basis1::ExecutionSpace > |
View type for input points. | |
using | ScalarViewType = Kokkos::DynRankView< scalarType, Kokkos::LayoutStride, Basis1::ExecutionSpace > |
View type for scalars. | |
Public Member Functions | |
Basis_TensorBasis (Basis1 basis1, Basis2 basis2) | |
Constructor. More... | |
void | getComponentPoints (const PointViewType inputPoints, const bool attemptTensorDecomposition, PointViewType &inputPoints1, PointViewType &inputPoints2, bool &tensorDecompositionSucceeded) const |
Method to extract component points from composite points. More... | |
virtual void | getDofCoords (typename BasisSuper::ScalarViewType dofCoords) const override |
Fills in spatial locations (coordinates) of degrees of freedom (nodes) on the reference cell. More... | |
virtual const char * | getName () const override |
Returns basis name. More... | |
ordinal_type | getTensorDkEnumeration (ordinal_type dkEnum1, ordinal_type operatorOrder1, ordinal_type dkEnum2, ordinal_type operatorOrder2) const |
Given "Dk" enumeration indices for the component bases, returns a Dk enumeration index for the composite basis. More... | |
void | getValues (OutputViewType outputValues, const PointViewType inputPoints, const EOperator operatorType=OPERATOR_VALUE) const override |
Evaluation of a FEM basis on a reference cell. More... | |
virtual void | getValues (OutputViewType outputValues, const EOperator operatorType, const PointViewType inputPoints1, const PointViewType inputPoints2, bool tensorPoints) const |
Evaluation of a tensor FEM basis on a reference cell; subclasses should override this. More... | |
void | getValues (OutputViewType outputValues, const PointViewType inputPoints1, const EOperator operatorType1, const PointViewType inputPoints2, const EOperator operatorType2, bool tensorPoints, double weight=1.0) const |
Evaluation of a tensor FEM basis on a reference cell. More... | |
Public Member Functions inherited from Intrepid2::Basis< Basis1::ExecutionSpace, Basis1::OutputValueType, Basis1::PointValueType > | |
OutputValueType | getDummyOutputValue () |
Dummy array to receive input arguments. | |
PointValueType | getDummyPointValue () |
Dummy array to receive input arguments. | |
virtual void | getValues (OutputViewType, const PointViewType, const EOperator=OPERATOR_VALUE) const |
Evaluation of a FEM basis on a reference cell. More... | |
virtual void | getValues (OutputViewType, const PointViewType, const PointViewType, const EOperator=OPERATOR_VALUE) const |
Evaluation of an FVD basis evaluation on a physical cell. More... | |
virtual void | getDofCoords (ScalarViewType) const |
Returns spatial locations (coordinates) of degrees of freedom on the reference cell. | |
virtual void | getDofCoeffs (ScalarViewType) const |
Coefficients for computing degrees of freedom for Lagrangian basis If P is an element of the space spanned by the basis, := P(dofCoords(i)) dofCoeffs(i) are the nodal coefficients associated to basis function i. More... | |
OrdinalTypeArray1DHost | getFieldOrdinalsForDegree (OrdinalTypeArray1DHost °rees) const |
For hierarchical bases, returns the field ordinals that have at most the specified degree in each dimension. Assuming that these are less than or equal to the polynomial orders provided at Basis construction, the corresponding polynomials will form a superset of the Basis of the same type constructed with polynomial orders corresponding to the specified degrees. More... | |
std::vector< int > | getFieldOrdinalsForDegree (std::vector< int > °rees) const |
For hierarchical bases, returns the field ordinals that have at most the specified degree in each dimension. Assuming that these are less than or equal to the polynomial orders provided at Basis construction, the corresponding polynomials will form a superset of the Basis of the same type constructed with polynomial orders corresponding to the specified degrees. More... | |
OrdinalTypeArray1DHost | getPolynomialDegreeOfField (int fieldOrdinal) const |
For hierarchical bases, returns the polynomial degree (which may have multiple values in higher spatial dimensions) for the specified basis ordinal as a host array. More... | |
std::vector< int > | getPolynomialDegreeOfFieldAsVector (int fieldOrdinal) const |
For hierarchical bases, returns the polynomial degree (which may have multiple values in higher spatial dimensions) for the specified basis ordinal as a host array. More... | |
int | getPolynomialDegreeLength () const |
For hierarchical bases, returns the number of entries required to specify the polynomial degree of a basis function. | |
virtual bool | requireOrientation () const |
True if orientation is required. | |
ordinal_type | getCardinality () const |
Returns cardinality of the basis. More... | |
ordinal_type | getDegree () const |
Returns the degree of the basis. More... | |
EFunctionSpace | getFunctionSpace () const |
Returns the function space for the basis. More... | |
shards::CellTopology | getBaseCellTopology () const |
Returns the base cell topology for which the basis is defined. See Shards documentation https://trilinos.org/packages/shards for definition of base cell topology. More... | |
EBasis | getBasisType () const |
Returns the basis type. More... | |
ECoordinates | getCoordinateSystem () const |
Returns the type of coordinate system for which the basis is defined. More... | |
ordinal_type | getDofCount (const ordinal_type subcDim, const ordinal_type subcOrd) const |
DoF count for specified subcell. More... | |
ordinal_type | getDofOrdinal (const ordinal_type subcDim, const ordinal_type subcOrd, const ordinal_type subcDofOrd) const |
DoF tag to ordinal lookup. More... | |
const OrdinalTypeArray3DHost | getAllDofOrdinal () const |
DoF tag to ordinal data structure. | |
const OrdinalTypeArrayStride1DHost | getDofTag (const ordinal_type dofOrd) const |
DoF ordinal to DoF tag lookup. More... | |
const OrdinalTypeArray2DHost | getAllDofTags () const |
Retrieves all DoF tags. More... | |
Protected Attributes | |
Basis1 | basis1_ |
Basis2 | basis2_ |
std::string | name_ |
Protected Attributes inherited from Intrepid2::Basis< Basis1::ExecutionSpace, Basis1::OutputValueType, Basis1::PointValueType > | |
ordinal_type | basisCardinality_ |
Cardinality of the basis, i.e., the number of basis functions/degrees-of-freedom. | |
ordinal_type | basisDegree_ |
Degree of the largest complete polynomial space that can be represented by the basis. | |
shards::CellTopology | basisCellTopology_ |
Base topology of the cells for which the basis is defined. See the Shards package for definition of base cell topology. | |
EBasis | basisType_ |
Type of the basis. | |
ECoordinates | basisCoordinates_ |
The coordinate system for which the basis is defined. | |
EFunctionSpace | functionSpace_ |
The function space in which the basis is defined. | |
OrdinalTypeArray2DHost | ordinalToTag_ |
"true" if tagToOrdinal_ and ordinalToTag_ have been initialized More... | |
OrdinalTypeArray3DHost | tagToOrdinal_ |
DoF tag to ordinal lookup table. More... | |
Kokkos::DynRankView < scalarType, Basis1::ExecutionSpace > | dofCoords_ |
Coordinates of degrees-of-freedom for basis functions defined in physical space. | |
Kokkos::DynRankView < scalarType, Basis1::ExecutionSpace > | dofCoeffs_ |
Coefficients for computing degrees of freedom for Lagrangian basis If P is an element of the space spanned by the basis, := P(dofCoords_(i)) dofCoeffs_(i) are the nodal coefficients associated to basis functions i. More... | |
OrdinalTypeArray2DHost | fieldOrdinalPolynomialDegree_ |
Polynomial degree for each degree of freedom. Only defined for hierarchical bases right now. The number of entries per degree of freedom in this table depends on the basis type. For hypercubes, this will be the spatial dimension. We have not yet determined what this will be for simplices beyond 1D; there are not yet hierarchical simplicial bases beyond 1D in Intrepid2. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from Intrepid2::Basis< Basis1::ExecutionSpace, Basis1::OutputValueType, Basis1::PointValueType > | |
void | setOrdinalTagData (OrdinalTypeView3D &tagToOrdinal, OrdinalTypeView2D &ordinalToTag, const OrdinalTypeView1D tags, const ordinal_type basisCard, const ordinal_type tagSize, const ordinal_type posScDim, const ordinal_type posScOrd, const ordinal_type posDfOrd) |
Fills ordinalToTag_ and tagToOrdinal_ by basis-specific tag data. More... | |
Basis defined as the tensor product of two component bases.
The cell topology for the tensor basis is the tensor product of the cell topologies on which the component bases are defined;
The basis is ordered such that the Basis1 field ordinals are the fastest-moving index; the formula for the composite field ordinal is: compositeFieldOrdinal = componentFieldOrdinal2 * basis1Cardinality + componentFieldOrdinal1 This is done so that we can consider, e.g. Basis1 as the "x" dimension and Basis2 as the "y" dimension, and have the basis ordered in the same way that existing Intrepid2 bases on the quadrilateral are ordered, namely, one moves along the x dimension first, moving across the quadrilateral dofs "row-wise".
Definition at line 303 of file Intrepid2_TensorBasis.hpp.
|
inline |
Constructor.
[in] | basis1 | - the first component basis |
[in] | basis2 | - the second component basis |
Definition at line 328 of file Intrepid2_TensorBasis.hpp.
|
inline |
Method to extract component points from composite points.
[in] | inputPoints | - points defined on the composite cell topology |
[in] | attemptTensorDecomposition | - if true, attempt to find a tensor decomposition. |
[out] | inputPoints1 | - points defined on the first component cell topology |
[out] | inputPoints2 | - points defined on the second component cell topology |
[out] | tensorDecompositionSucceeded | - if true, the attempt to find a tensor decomposition succeeded. |
At present, attemptTensorDecomposition is ignored, and tensorDecompositionSucceeded will always return false. However, we intend to support the tensor decomposition in the future, which will allow substantial optimizations in computation of tensor bases.
Definition at line 476 of file Intrepid2_TensorBasis.hpp.
Referenced by Intrepid2::Basis_TensorBasis< HVOL_LINE, HGRAD_LINE >::getValues().
|
inlineoverridevirtual |
Fills in spatial locations (coordinates) of degrees of freedom (nodes) on the reference cell.
[out] | dofCoords | - the container into which to place the degrees of freedom. |
dofCoords should have shape (F,D), where the field dimension matches the cardinality of the basis, and D is the spatial dimension of the topology on which the basis is defined.
Note that getDofCoords() is not supported by all bases; in particular, hierarchical bases do not generally support this.
Definition at line 520 of file Intrepid2_TensorBasis.hpp.
|
inlineoverridevirtual |
Returns basis name.
Reimplemented from Intrepid2::Basis< Basis1::ExecutionSpace, Basis1::OutputValueType, Basis1::PointValueType >.
Reimplemented in Intrepid2::Basis_Derived_HVOL_HEX< HVOL_LINE >, and Intrepid2::Basis_Derived_HVOL_QUAD< HVOL_LINE >.
Definition at line 562 of file Intrepid2_TensorBasis.hpp.
|
inline |
Given "Dk" enumeration indices for the component bases, returns a Dk enumeration index for the composite basis.
[in] | dkEnum1 | - Dk enumeration index for first component basis |
[in] | operatorOrder1 | - operator order for the first component basis |
[in] | dkEnum2 | - Dk enumeration index for second component basis |
[in] | operatorOrder2 | - operator order for the second component basis |
Definition at line 574 of file Intrepid2_TensorBasis.hpp.
Referenced by Intrepid2::Basis_TensorBasis< HVOL_LINE, HGRAD_LINE >::getValues().
|
inlineoverride |
Evaluation of a FEM basis on a reference cell.
Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.
outputValues | [out] - variable rank array with the basis values |
inputPoints | [in] - rank-2 array (P,D) with the evaluation points |
operatorType | [in] - the operator acting on the basis functions |
Definition at line 637 of file Intrepid2_TensorBasis.hpp.
Referenced by Intrepid2::Basis_Derived_HDIV_Family1_QUAD< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HCURL_Family1_QUAD< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HGRAD_QUAD< HGRAD_LINE >::getValues(), Intrepid2::Basis_Derived_HGRAD_HEX< HGRAD_LINE >::getValues(), Intrepid2::Basis_Derived_HVOL_QUAD< HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HVOL_HEX< HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HDIV_Family2_QUAD< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HCURL_Family2_QUAD< HGRAD_LINE, HVOL_LINE >::getValues(), and Intrepid2::Basis_TensorBasis< HVOL_LINE, HGRAD_LINE >::getValues().
|
inlinevirtual |
Evaluation of a tensor FEM basis on a reference cell; subclasses should override this.
Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.
outputValues | [out] - variable rank array with the basis values |
operatorType | [in] - the operator acting on the basis functions |
inputPoints1 | [in] - rank-2 array (P1,D1) with the evaluation points for basis1 |
inputPoints2 | [in] - rank-2 array (P2,D2) with the evaluation points for basis2 |
tensorPoints | [in] - whether the points should be interpreted as tensor components of the evaluation points, or in a one-to-one correspondence |
Subclasses should override this method; this gives them an opportunity to specify how operatorType should be decomposed into operators on the component bases.
If tensorPoints is true, then the points dimension of outputValues should be (P1*P2). If tensorPoints is false, then P1 should equal P2, and these should match the points dimension of outputValues.
There are three variants of getValues:
The intent is that subclasses implement this five-argument version; in that implementation, they need to do little else than call the seven-argument version below.
Note that the three-argument implementation handles the OPERATOR_Dn operators directly; that is, subclasses can omit any consideration of OPERATOR_Dn operators in their implementation of the five-argument version.
Reimplemented in Intrepid2::Basis_TensorBasis3< HVOL_LINE, HGRAD_LINE, HGRAD_LINE >, Intrepid2::Basis_TensorBasis3< HVOL_LINE, HVOL_LINE, HGRAD_LINE >, Intrepid2::Basis_TensorBasis3< HGRAD_LINE, HVOL_LINE, HGRAD_LINE >, Intrepid2::Basis_TensorBasis3< HGRAD_LINE, HGRAD_LINE, HVOL_LINE >, Intrepid2::Basis_TensorBasis3< HVOL_LINE, HGRAD_LINE, HVOL_LINE >, and Intrepid2::Basis_TensorBasis3< HGRAD_LINE, HVOL_LINE, HVOL_LINE >.
Definition at line 766 of file Intrepid2_TensorBasis.hpp.
|
inline |
Evaluation of a tensor FEM basis on a reference cell.
Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.
outputValues | [out] - variable rank array with the basis values |
inputPoints1 | [in] - rank-2 array (P1,D1) with the evaluation points for basis1 |
operatorType1 | [in] - the operator acting on basis1 |
inputPoints2 | [in] - rank-2 array (P2,D2) with the evaluation points for basis2 |
operatorType2 | [in] - the operator acting on basis2 |
tensorPoints | [in] - whether the points should be interpreted as tensor components of the evaluation points, or in a one-to-one correspondence |
weight | [in] - optional weight (typically 1.0 or -1.0) |
If tensorPoints is true, then the points dimension of outputValues should be (P1*P2). If tensorPoints is false, then P1 should equal P2, and these should match the points dimension of outputValues.
There are three variants of getValues:
Subclasses should override the five-argument version above; in their implementation, they need to do little else than call this seven-argument version.
Definition at line 796 of file Intrepid2_TensorBasis.hpp.