Intrepid2
Public Types | Public Member Functions | Protected Attributes | Private Types | List of all members
Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar > Class Template Referenceabstract
Inheritance diagram for Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar >:
Intrepid2::Basis_TensorBasis< Basis_TensorBasis< Basis1, Basis2 >, Basis3 > Intrepid2::Basis< Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, Basis_TensorBasis< Basis1, Basis2 >::PointValueType >

Public Types

using OutputViewType = typename TensorBasis123::OutputViewType
 
using PointViewType = typename TensorBasis123::PointViewType
 
using ScalarViewType = typename TensorBasis123::ScalarViewType
 
using OutputValueType = typename TensorBasis123::OutputValueType
 
using PointValueType = typename TensorBasis123::PointValueType
 
- Public Types inherited from Intrepid2::Basis_TensorBasis< Basis_TensorBasis< Basis1, Basis2 >, Basis3 >
using BasisSuper = ::Intrepid2::Basis< typename Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, typename Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, typename Basis_TensorBasis< Basis1, Basis2 >::PointValueType >
 
using ExecutionSpace = typename BasisSuper::ExecutionSpace
 
using OutputValueType = typename BasisSuper::OutputValueType
 
using PointValueType = typename BasisSuper::PointValueType
 
using OrdinalTypeArray1DHost = typename BasisSuper::OrdinalTypeArray1DHost
 
using OrdinalTypeArray2DHost = typename BasisSuper::OrdinalTypeArray2DHost
 
using OutputViewType = typename BasisSuper::OutputViewType
 
using PointViewType = typename BasisSuper::PointViewType
 
- Public Types inherited from Intrepid2::Basis< Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, Basis_TensorBasis< Basis1, Basis2 >::PointValueType >
using ExecutionSpace = Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace
 (Kokkos) Execution space for basis.
 
using OutputValueType = Basis_TensorBasis< Basis1, Basis2 >::OutputValueType
 Output value type for basis; default is double.
 
using PointValueType = Basis_TensorBasis< Basis1, Basis2 >::PointValueType
 Point value type for basis; default is double.
 
using OrdinalViewType = Kokkos::View< ordinal_type, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for ordinal.
 
using EBasisViewType = Kokkos::View< EBasis, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View for basis type.
 
using ECoordinatesViewType = Kokkos::View< ECoordinates, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View for coordinate system type.
 
using OrdinalTypeArray1DHost = Kokkos::View< ordinal_type *, typename Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace::array_layout, Kokkos::HostSpace >
 View type for 1d host array.
 
using OrdinalTypeArray2DHost = Kokkos::View< ordinal_type **, typename Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace::array_layout, Kokkos::HostSpace >
 View type for 2d host array.
 
using OrdinalTypeArray3DHost = Kokkos::View< ordinal_type ***, typename Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace::array_layout, Kokkos::HostSpace >
 View type for 3d host array.
 
using OrdinalTypeArrayStride1DHost = Kokkos::View< ordinal_type *, Kokkos::LayoutStride, Kokkos::HostSpace >
 View type for 1d host array.
 
using OrdinalTypeArray1D = Kokkos::View< ordinal_type *, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for 1d device array.
 
using OrdinalTypeArray2D = Kokkos::View< ordinal_type **, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for 2d device array.
 
using OrdinalTypeArray3D = Kokkos::View< ordinal_type ***, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for 3d device array.
 
using OrdinalTypeArrayStride1D = Kokkos::View< ordinal_type *, Kokkos::LayoutStride, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for 1d device array.
 
typedef ScalarTraits
< Basis_TensorBasis< Basis1,
Basis2 >::PointValueType >
::scalar_type 
scalarType
 Scalar type for point values.
 
using OutputViewType = Kokkos::DynRankView< OutputValueType, Kokkos::LayoutStride, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for basis value output.
 
using PointViewType = Kokkos::DynRankView< PointValueType, Kokkos::LayoutStride, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for input points.
 
using ScalarViewType = Kokkos::DynRankView< scalarType, Kokkos::LayoutStride, Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace >
 View type for scalars.
 

Public Member Functions

 Basis_TensorBasis3 (Basis1 basis1, Basis2 basis2, Basis3 basis3)
 
virtual void getValues (OutputViewType outputValues, const EOperator operatorType, const PointViewType inputPoints12, const PointViewType inputPoints3, bool tensorPoints) const override
 Evaluation of a tensor FEM basis on a reference cell. More...
 
virtual void getValues (OutputViewType outputValues, const EOperator operatorType, const PointViewType inputPoints1, const PointViewType inputPoints2, const PointViewType inputPoints3, bool tensorPoints) const =0
 Evaluation of a tensor FEM basis on a reference cell; subclasses should override this. More...
 
void getValues (OutputViewType outputValues, const PointViewType inputPoints1, const EOperator operatorType1, const PointViewType inputPoints2, const EOperator operatorType2, const PointViewType inputPoints3, const EOperator operatorType3, bool tensorPoints, double weight=1.0) const
 Evaluation of a tensor FEM basis on a reference cell; subclasses should override this. More...
 
- Public Member Functions inherited from Intrepid2::Basis_TensorBasis< Basis_TensorBasis< Basis1, Basis2 >, Basis3 >
 Basis_TensorBasis (Basis_TensorBasis< Basis1, Basis2 >basis1, Basis3basis2)
 Constructor. More...
 
void getComponentPoints (const PointViewType inputPoints, const bool attemptTensorDecomposition, PointViewType &inputPoints1, PointViewType &inputPoints2, bool &tensorDecompositionSucceeded) const
 Method to extract component points from composite points. More...
 
virtual void getDofCoords (typename BasisSuper::ScalarViewType dofCoords) const override
 Fills in spatial locations (coordinates) of degrees of freedom (nodes) on the reference cell. More...
 
virtual const char * getName () const override
 Returns basis name. More...
 
ordinal_type getTensorDkEnumeration (ordinal_type dkEnum1, ordinal_type operatorOrder1, ordinal_type dkEnum2, ordinal_type operatorOrder2) const
 Given "Dk" enumeration indices for the component bases, returns a Dk enumeration index for the composite basis. More...
 
void getValues (OutputViewType outputValues, const PointViewType inputPoints, const EOperator operatorType=OPERATOR_VALUE) const override
 Evaluation of a FEM basis on a reference cell. More...
 
virtual void getValues (OutputViewType outputValues, const EOperator operatorType, const PointViewType inputPoints1, const PointViewType inputPoints2, bool tensorPoints) const
 Evaluation of a tensor FEM basis on a reference cell; subclasses should override this. More...
 
void getValues (OutputViewType outputValues, const PointViewType inputPoints1, const EOperator operatorType1, const PointViewType inputPoints2, const EOperator operatorType2, bool tensorPoints, double weight=1.0) const
 Evaluation of a tensor FEM basis on a reference cell. More...
 
- Public Member Functions inherited from Intrepid2::Basis< Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, Basis_TensorBasis< Basis1, Basis2 >::PointValueType >
OutputValueType getDummyOutputValue ()
 Dummy array to receive input arguments.
 
PointValueType getDummyPointValue ()
 Dummy array to receive input arguments.
 
virtual void getValues (OutputViewType, const PointViewType, const PointViewType, const EOperator=OPERATOR_VALUE) const
 Evaluation of an FVD basis evaluation on a physical cell. More...
 
virtual void getDofCoords (ScalarViewType) const
 Returns spatial locations (coordinates) of degrees of freedom on the reference cell.
 
virtual void getDofCoeffs (ScalarViewType) const
 Coefficients for computing degrees of freedom for Lagrangian basis If P is an element of the space spanned by the basis, := P(dofCoords(i)) dofCoeffs(i) are the nodal coefficients associated to basis function i. More...
 
OrdinalTypeArray1DHost getFieldOrdinalsForDegree (OrdinalTypeArray1DHost &degrees) const
 For hierarchical bases, returns the field ordinals that have at most the specified degree in each dimension. Assuming that these are less than or equal to the polynomial orders provided at Basis construction, the corresponding polynomials will form a superset of the Basis of the same type constructed with polynomial orders corresponding to the specified degrees. More...
 
std::vector< int > getFieldOrdinalsForDegree (std::vector< int > &degrees) const
 For hierarchical bases, returns the field ordinals that have at most the specified degree in each dimension. Assuming that these are less than or equal to the polynomial orders provided at Basis construction, the corresponding polynomials will form a superset of the Basis of the same type constructed with polynomial orders corresponding to the specified degrees. More...
 
OrdinalTypeArray1DHost getPolynomialDegreeOfField (int fieldOrdinal) const
 For hierarchical bases, returns the polynomial degree (which may have multiple values in higher spatial dimensions) for the specified basis ordinal as a host array. More...
 
std::vector< int > getPolynomialDegreeOfFieldAsVector (int fieldOrdinal) const
 For hierarchical bases, returns the polynomial degree (which may have multiple values in higher spatial dimensions) for the specified basis ordinal as a host array. More...
 
int getPolynomialDegreeLength () const
 For hierarchical bases, returns the number of entries required to specify the polynomial degree of a basis function.
 
virtual bool requireOrientation () const
 True if orientation is required.
 
ordinal_type getCardinality () const
 Returns cardinality of the basis. More...
 
ordinal_type getDegree () const
 Returns the degree of the basis. More...
 
EFunctionSpace getFunctionSpace () const
 Returns the function space for the basis. More...
 
shards::CellTopology getBaseCellTopology () const
 Returns the base cell topology for which the basis is defined. See Shards documentation https://trilinos.org/packages/shards for definition of base cell topology. More...
 
EBasis getBasisType () const
 Returns the basis type. More...
 
ECoordinates getCoordinateSystem () const
 Returns the type of coordinate system for which the basis is defined. More...
 
ordinal_type getDofCount (const ordinal_type subcDim, const ordinal_type subcOrd) const
 DoF count for specified subcell. More...
 
ordinal_type getDofOrdinal (const ordinal_type subcDim, const ordinal_type subcOrd, const ordinal_type subcDofOrd) const
 DoF tag to ordinal lookup. More...
 
const OrdinalTypeArray3DHost getAllDofOrdinal () const
 DoF tag to ordinal data structure.
 
const OrdinalTypeArrayStride1DHost getDofTag (const ordinal_type dofOrd) const
 DoF ordinal to DoF tag lookup. More...
 
const OrdinalTypeArray2DHost getAllDofTags () const
 Retrieves all DoF tags. More...
 

Protected Attributes

Basis1 basis1_
 
Basis2 basis2_
 
Basis3 basis3_
 
- Protected Attributes inherited from Intrepid2::Basis_TensorBasis< Basis_TensorBasis< Basis1, Basis2 >, Basis3 >
Basis_TensorBasis< Basis1, Basis2 > basis1_
 
Basis3 basis2_
 
std::string name_
 
- Protected Attributes inherited from Intrepid2::Basis< Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, Basis_TensorBasis< Basis1, Basis2 >::PointValueType >
ordinal_type basisCardinality_
 Cardinality of the basis, i.e., the number of basis functions/degrees-of-freedom.
 
ordinal_type basisDegree_
 Degree of the largest complete polynomial space that can be represented by the basis.
 
shards::CellTopology basisCellTopology_
 Base topology of the cells for which the basis is defined. See the Shards package for definition of base cell topology.
 
EBasis basisType_
 Type of the basis.
 
ECoordinates basisCoordinates_
 The coordinate system for which the basis is defined.
 
EFunctionSpace functionSpace_
 The function space in which the basis is defined.
 
OrdinalTypeArray2DHost ordinalToTag_
 "true" if tagToOrdinal_ and ordinalToTag_ have been initialized More...
 
OrdinalTypeArray3DHost tagToOrdinal_
 DoF tag to ordinal lookup table. More...
 
Kokkos::DynRankView
< scalarType,
Basis_TensorBasis< Basis1,
Basis2 >::ExecutionSpace
dofCoords_
 Coordinates of degrees-of-freedom for basis functions defined in physical space.
 
Kokkos::DynRankView
< scalarType,
Basis_TensorBasis< Basis1,
Basis2 >::ExecutionSpace
dofCoeffs_
 Coefficients for computing degrees of freedom for Lagrangian basis If P is an element of the space spanned by the basis, := P(dofCoords_(i)) dofCoeffs_(i) are the nodal coefficients associated to basis functions i. More...
 
OrdinalTypeArray2DHost fieldOrdinalPolynomialDegree_
 Polynomial degree for each degree of freedom. Only defined for hierarchical bases right now. The number of entries per degree of freedom in this table depends on the basis type. For hypercubes, this will be the spatial dimension. We have not yet determined what this will be for simplices beyond 1D; there are not yet hierarchical simplicial bases beyond 1D in Intrepid2. More...
 

Private Types

using Basis12 = Basis_TensorBasis< Basis1, Basis2 >
 
using TensorBasis123 = Basis_TensorBasis< Basis12, Basis3 >
 

Additional Inherited Members

- Protected Member Functions inherited from Intrepid2::Basis< Basis_TensorBasis< Basis1, Basis2 >::ExecutionSpace, Basis_TensorBasis< Basis1, Basis2 >::OutputValueType, Basis_TensorBasis< Basis1, Basis2 >::PointValueType >
void setOrdinalTagData (OrdinalTypeView3D &tagToOrdinal, OrdinalTypeView2D &ordinalToTag, const OrdinalTypeView1D tags, const ordinal_type basisCard, const ordinal_type tagSize, const ordinal_type posScDim, const ordinal_type posScOrd, const ordinal_type posDfOrd)
 Fills ordinalToTag_ and tagToOrdinal_ by basis-specific tag data. More...
 

Detailed Description

template<typename Basis1, typename Basis2, typename Basis3, typename ExecutionSpace = typename Basis1::ExecutionSpace, typename OutputScalar = double, typename PointScalar = double>
class Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar >

Definition at line 1126 of file Intrepid2_TensorBasis.hpp.

Member Function Documentation

template<typename Basis1, typename Basis2, typename Basis3, typename ExecutionSpace = typename Basis1::ExecutionSpace, typename OutputScalar = double, typename PointScalar = double>
virtual void Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar >::getValues ( OutputViewType  outputValues,
const EOperator  operatorType,
const PointViewType  inputPoints12,
const PointViewType  inputPoints3,
bool  tensorPoints 
) const
inlineoverridevirtual

Evaluation of a tensor FEM basis on a reference cell.

Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.

Parameters
outputValues[out] - variable rank array with the basis values
operatorType[in] - the operator acting on the basis functions
inputPoints12[in] - rank-2 array (P12,D12) with the evaluation points for basis12
inputPoints3[in] - rank-2 array (P3,D3) with the evaluation points for basis3
tensorPoints[in] - whether the points should be interpreted as tensor components of the evaluation points, or in a one-to-one correspondence

If tensorPoints is true, then the points dimension of outputValues should be (P12*P3). If tensorPoints is false, then P12 should equal P3, and these should match the points dimension of outputValues.

There are four variants of getValues:

  1. The three-argument version defined by Intrepid2::Basis. TensorBasis provides an implementation of this, which calls the five-argument version (this one).
  2. The five-argument version (this method), which provides partially separated point sets for the component bases. TensorBasis3 provides an implementation of this, which calls the six-argument version.
  3. The six-argument version, which fully separates the point sets for the component bases. Subclasses should implement this; they essentially specify the decomposition of the operator.
  4. The nine-argument version (below), implemented by TensorBasis3, which provides separate point sets and operators for the component bases, as well as an optional weight.

The intent is that subclasses implement the six-argument version; in that implementation, they need to do little else than call the nine-argument version below.

Note that the three-argument implementation handles the OPERATOR_Dn operators directly; that is, subclasses can omit any consideration of OPERATOR_Dn operators in their implementation of the six-argument version.

Definition at line 1179 of file Intrepid2_TensorBasis.hpp.

Referenced by Intrepid2::Basis_Derived_HCURL_Family1_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HDIV_Family1_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HDIV_Family2_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HCURL_Family2_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HDIV_Family3_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), Intrepid2::Basis_Derived_HCURL_Family3_HEX< HGRAD_LINE, HVOL_LINE >::getValues(), and Intrepid2::Basis_TensorBasis3< HGRAD_LINE, HVOL_LINE, HVOL_LINE >::getValues().

template<typename Basis1, typename Basis2, typename Basis3, typename ExecutionSpace = typename Basis1::ExecutionSpace, typename OutputScalar = double, typename PointScalar = double>
virtual void Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar >::getValues ( OutputViewType  outputValues,
const EOperator  operatorType,
const PointViewType  inputPoints1,
const PointViewType  inputPoints2,
const PointViewType  inputPoints3,
bool  tensorPoints 
) const
pure virtual

Evaluation of a tensor FEM basis on a reference cell; subclasses should override this.

Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.

Parameters
outputValues[out] - variable rank array with the basis values
operatorType[in] - the operator acting on the basis functions
inputPoints1[in] - rank-2 array (P1,D1) with the evaluation points for basis1
inputPoints1[in] - rank-2 array (P2,D2) with the evaluation points for basis2
inputPoints3[in] - rank-2 array (P3,D3) with the evaluation points for basis3
tensorPoints[in] - whether the points should be interpreted as tensor components of the evaluation points, or in a one-to-one correspondence

Subclasses should override this method; this gives them an opportunity to specify how operatorType should be decomposed into operators on the component bases.

If tensorPoints is true, then the points dimension of outputValues should be (P1*P2*P3). If tensorPoints is false, then P1 should equal P2 and P2 should equal P3, and these should match the points dimension of outputValues.

There are four variants of getValues:

  1. The three-argument version defined by Intrepid2::Basis. TensorBasis provides an implementation of this, which calls the five-argument version (this one).
  2. The five-argument version (above), which provides partially separated point sets for the component bases. TensorBasis3 provides an implementation of this, which calls the six-argument version.
  3. The six-argument version (this method), which fully separates the point sets for the component bases. Subclasses should implement this; they essentially specify the decomposition of the operator.
  4. The nine-argument version (below), implemented by TensorBasis3, which provides separate point sets and operators for the component bases, as well as an optional weight.

The intent is that subclasses implement this six-argument version; in that implementation, they need to do little else than call the nine-argument version below.

Note that the three-argument implementation handles the OPERATOR_Dn operators directly; that is, subclasses can omit any consideration of OPERATOR_Dn operators in their implementation of the five-argument version.

template<typename Basis1, typename Basis2, typename Basis3, typename ExecutionSpace = typename Basis1::ExecutionSpace, typename OutputScalar = double, typename PointScalar = double>
void Intrepid2::Basis_TensorBasis3< Basis1, Basis2, Basis3, ExecutionSpace, OutputScalar, PointScalar >::getValues ( OutputViewType  outputValues,
const PointViewType  inputPoints1,
const EOperator  operatorType1,
const PointViewType  inputPoints2,
const EOperator  operatorType2,
const PointViewType  inputPoints3,
const EOperator  operatorType3,
bool  tensorPoints,
double  weight = 1.0 
) const
inline

Evaluation of a tensor FEM basis on a reference cell; subclasses should override this.

Returns values of operatorType acting on FEM basis functions for a set of points in the reference cell for which the basis is defined.

Parameters
outputValues[out] - variable rank array with the basis values
inputPoints1[in] - rank-2 array (P1,D1) with the evaluation points for basis1
operatorType1[in] - the operator acting on basis1
inputPoints2[in] - rank-2 array (P2,D2) with the evaluation points for basis2
operatorType2[in] - the operator acting on basis2
inputPoints3[in] - rank-2 array (P3,D3) with the evaluation points for basis3
operatorType3[in] - the operator acting on basis3
tensorPoints[in] - whether the points should be interpreted as tensor components of the evaluation points, or in a one-to-one correspondence

If tensorPoints is true, then the points dimension of outputValues should be (P1*P2*P3). If tensorPoints is false, then P1 should equal P2 and P2 should equal P3, and these should match the points dimension of outputValues.

There are four variants of getValues:

  1. The three-argument version defined by Intrepid2::Basis. TensorBasis provides an implementation of this, which calls the five-argument version (this one).
  2. The five-argument version (above), which provides partially separated point sets for the component bases. TensorBasis3 provides an implementation of this, which calls the six-argument version.
  3. The six-argument version (this method), which fully separates the point sets for the component bases. Subclasses should implement this; they essentially specify the decomposition of the operator.
  4. The nine-argument version (below), implemented by TensorBasis3, which provides separate point sets and operators for the component bases, as well as an optional weight.

The intent is that subclasses implement this six-argument version; in that implementation, they need to do little else than call the nine-argument version below.

Note that the three-argument implementation handles the OPERATOR_Dn operators directly; that is, subclasses can omit any consideration of OPERATOR_Dn operators in their implementation of the five-argument version.

Definition at line 1266 of file Intrepid2_TensorBasis.hpp.


The documentation for this class was generated from the following file: