ROL
Public Types | Public Member Functions | Static Public Member Functions | Private Types | Private Attributes | List of all members
ROL::PartitionedVector< Real > Class Template Reference

Defines the linear algebra of vector space on a generic partitioned vector. More...

#include <ROL_PartitionedVector.hpp>

+ Inheritance diagram for ROL::PartitionedVector< Real >:

Public Types

typedef std::vector< PV >
::size_type 
size_type
 

Public Member Functions

 PartitionedVector (const std::vector< Vp > &vecs)
 
void set (const V &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
void plus (const V &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
void axpy (const Real alpha, const V &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const V &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Vp clone () const
 Clone to make a new (uninitialized) vector. More...
 
const Vdual (void) const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
Vp basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
void zero ()
 Set to zero vector. More...
 
void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const Elementwise::BinaryFunction< Real > &f, const V &x)
 
Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More...
 
void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u]. More...
 
void print (std::ostream &outStream) const
 
const Vector< Real > & operator[] (size_type i) const
 
Vector< Real > & operator[] (size_type i)
 
ROL::Ptr< const Vector< Real > > get (size_type i) const
 
ROL::Ptr< Vector< Real > > get (size_type i)
 
void set (size_type i, const V &x)
 
void zero (size_type i)
 
size_type numVectors () const
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Static Public Member Functions

static Ptr< PartitionedVectorcreate (std::initializer_list< Vp > vs)
 
static Ptr< PartitionedVectorcreate (const V &x, size_type N)
 

Private Types

typedef Vector< Real > V
 
typedef ROL::Ptr< VVp
 
typedef PartitionedVector< Real > PV
 

Private Attributes

const std::vector< Vpvecs_
 
std::vector< Vpdual_vecs_
 
ROL::Ptr< PVdual_pvec_
 

Detailed Description

template<class Real>
class ROL::PartitionedVector< Real >

Defines the linear algebra of vector space on a generic partitioned vector.

Definition at line 26 of file ROL_PartitionedVector.hpp.

Member Typedef Documentation

template<class Real>
typedef Vector<Real> ROL::PartitionedVector< Real >::V
private

Definition at line 28 of file ROL_PartitionedVector.hpp.

template<class Real>
typedef ROL::Ptr<V> ROL::PartitionedVector< Real >::Vp
private

Definition at line 29 of file ROL_PartitionedVector.hpp.

template<class Real>
typedef PartitionedVector<Real> ROL::PartitionedVector< Real >::PV
private

Definition at line 30 of file ROL_PartitionedVector.hpp.

template<class Real>
typedef std::vector<PV>::size_type ROL::PartitionedVector< Real >::size_type

Definition at line 38 of file ROL_PartitionedVector.hpp.

Constructor & Destructor Documentation

template<class Real>
ROL::PartitionedVector< Real >::PartitionedVector ( const std::vector< Vp > &  vecs)
inline

Member Function Documentation

template<class Real>
void ROL::PartitionedVector< Real >::set ( const V x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

Parameters
[in]xis a vector.

On return \(\mathtt{*this} = x\). Uses zero and plus methods for the computation. Please overload if a more efficient implementation is needed.


Reimplemented from ROL::Vector< Real >.

Definition at line 46 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::AugmentedSystemPrecOperator< Real >::applyInverse(), ROL::FletcherObjectiveE< Real >::AugSystemPrecond::applyInverse(), ROL::Fletcher< Real >::AugSystemPrecond::applyInverse(), ROL::BoundFletcher< Real >::AugSystemPrecond::applyInverse(), and ROL::PartitionedVector< Real >::basis().

template<class Real>
void ROL::PartitionedVector< Real >::plus ( const V x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 56 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 66 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::axpy ( const Real  alpha,
const V x 
)
inlinevirtual

Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of x.
[in]xis a vector.

On return \(\mathtt{*this} = \mathtt{*this} + \alpha x \). Uses clone, set, scale and plus for the computation. Please overload if a more efficient implementation is needed.


Reimplemented from ROL::Vector< Real >.

Definition at line 72 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

template<class Real>
Real ROL::PartitionedVector< Real >::dot ( const V x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 83 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

template<class Real>
Real ROL::PartitionedVector< Real >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 95 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
Vp ROL::PartitionedVector< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 103 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::basis(), and ROL::PartitionedVector< Real >::PartitionedVector().

template<class Real>
const V& ROL::PartitionedVector< Real >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 111 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::dual_pvec_, ROL::PartitionedVector< Real >::dual_vecs_, and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::AugmentedSystemOperator< Real >::apply(), and ROL::PartitionedVector< Real >::PartitionedVector().

template<class Real>
Real ROL::PartitionedVector< Real >::apply ( const Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 119 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

template<class Real>
Vp ROL::PartitionedVector< Real >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 131 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::clone(), ROL::PartitionedVector< Real >::dimension(), ROL::PartitionedVector< Real >::set(), ROL::PartitionedVector< Real >::vecs_, and ROL::PartitionedVector< Real >::zero().

template<class Real>
int ROL::PartitionedVector< Real >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 154 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::basis().

template<class Real>
void ROL::PartitionedVector< Real >::zero ( )
inlinevirtual

Set to zero vector.

Uses scale by zero for the computation. Please overload if a more efficient implementation is needed.


Reimplemented from ROL::Vector< Real >.

Definition at line 162 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::Constraint_Partitioned< Real >::applyAdjointHessian(), ROL::Constraint_Partitioned< Real >::applyAdjointJacobian(), and ROL::PartitionedVector< Real >::basis().

template<class Real>
void ROL::PartitionedVector< Real >::applyUnary ( const Elementwise::UnaryFunction< Real > &  f)
inlinevirtual

Reimplemented from ROL::Vector< Real >.

Definition at line 169 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::applyBinary ( const Elementwise::BinaryFunction< Real > &  f,
const V x 
)
inlinevirtual
template<class Real>
Real ROL::PartitionedVector< Real >::reduce ( const Elementwise::ReductionOp< Real > &  r) const
inlinevirtual

Reimplemented from ROL::Vector< Real >.

Definition at line 184 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::setScalar ( const Real  C)
inlinevirtual

Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).

Parameters
[in]Cis a scalar.

On return \(\mathtt{*this} = C\). Uses applyUnary methods for the computation. Please overload if a more efficient implementation is needed.


Reimplemented from ROL::Vector< Real >.

Definition at line 193 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::randomize ( const Real  l = 0.0,
const Real  u = 1.0 
)
inlinevirtual

Set vector to be uniform random between [l,u].

Parameters
[in]lis a the lower bound.
[in]uis a the upper bound.

On return the components of \(\mathtt{*this}\) are uniform random numbers on the interval \([l,u]\). The default implementation uses applyUnary methods for the computation. Please overload if a more efficient implementation is needed.


Reimplemented from ROL::Vector< Real >.

Definition at line 199 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::print ( std::ostream &  outStream) const
inlinevirtual

Reimplemented from ROL::Vector< Real >.

Definition at line 205 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
const Vector<Real>& ROL::PartitionedVector< Real >::operator[] ( size_type  i) const
inline

Definition at line 213 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
Vector<Real>& ROL::PartitionedVector< Real >::operator[] ( size_type  i)
inline

Definition at line 217 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
ROL::Ptr<const Vector<Real> > ROL::PartitionedVector< Real >::get ( size_type  i) const
inline

Definition at line 221 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::AugmentedSystemOperator< Real >::apply(), ROL::BlockOperator< Real >::apply(), ROL::PrimalDualInteriorPointBlock11< Real >::apply(), ROL::FletcherObjectiveE< Real >::AugSystem::apply(), ROL::Fletcher< Real >::AugSystem::apply(), ROL::PartitionedVector< Real >::apply(), ROL::PrimalDualInteriorPointBlock12< Real >::apply(), ROL::TypeB::PrimalDualActiveSetAlgorithm< Real >::HessianPDAS_Poly::apply(), ROL::PrimalDualInteriorPointBlock21< Real >::apply(), ROL::BoundFletcher< Real >::AugSystemSym::apply(), ROL::BoundFletcher< Real >::AugSystemNonSym::apply(), ROL::PrimalDualInteriorPointBlock22< Real >::apply(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::apply(), ROL::Constraint_Partitioned< Real >::applyAdjointHessian(), ROL::Constraint_Partitioned< Real >::applyAdjointJacobian(), ROL::PartitionedVector< Real >::applyBinary(), ROL::AugmentedSystemPrecOperator< Real >::applyInverse(), ROL::FletcherObjectiveE< Real >::AugSystemPrecond::applyInverse(), ROL::Fletcher< Real >::AugSystemPrecond::applyInverse(), ROL::TypeB::PrimalDualActiveSetAlgorithm< Real >::PrecondPDAS_Poly::applyInverse(), ROL::BoundFletcher< Real >::AugSystemPrecond::applyInverse(), ROL::PrimalDualInteriorPointBlock22< Real >::applyInverse(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::applyInverse(), ROL::BoundConstraint_Partitioned< Real >::applyInverseScalingFunction(), ROL::Constraint_Partitioned< Real >::applyJacobian(), ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::Constraint_Partitioned< Real >::applyPreconditioner(), ROL::BoundConstraint_Partitioned< Real >::applyScalingFunctionJacobian(), ROL::PartitionedVector< Real >::axpy(), ROL::InteriorPoint::MeritFunction< Real >::dirDeriv(), ROL::PartitionedVector< Real >::dot(), ROL::Problem< Real >::finalizeIteration(), ROL::Constraint_TimeSimOpt< Real >::getNewVector(), ROL::Constraint_TimeSimOpt< Real >::getOldVector(), ROL::PrimalDualInteriorPointResidual< Real >::getOptMult(), ROL::ReducedDynamicObjective< Real >::gradient(), ROL::ReducedDynamicObjective< Real >::hessVec(), ROL::SlacklessObjective< Real >::invHessVec(), ROL::BoundConstraint_Partitioned< Real >::isFeasible(), ROL::InteriorPoint::MeritFunction< Real >::MeritFunction(), ROL::PartitionedVector< Real >::plus(), ROL::SlacklessObjective< Real >::precond(), ROL::PrimalDualInteriorPointBlock11< Real >::PrimalDualInteriorPointBlock11(), ROL::PrimalDualInteriorPointBlock21< Real >::PrimalDualInteriorPointBlock21(), ROL::PrimalDualInteriorPointBlock22< Real >::PrimalDualInteriorPointBlock22(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::InteriorPoint::PrimalDualResidual< Real >::PrimalDualResidual(), ROL::BoundConstraint_Partitioned< Real >::project(), ROL::BoundConstraint_Partitioned< Real >::projectInterior(), ROL::BoundConstraint_Partitioned< Real >::pruneLowerActive(), ROL::BoundConstraint_Partitioned< Real >::pruneUpperActive(), ROL::PrimalDualSystemStep< Real >::repartition(), ROL::PartitionedVector< Real >::set(), ROL::ReducedDynamicObjective< Real >::solveAdjoint(), ROL::ReducedDynamicObjective< Real >::solveState(), ROL::PrimalDualInteriorPointBlock11< Real >::update(), ROL::PrimalDualInteriorPointResidual< Real >::update(), ROL::PrimalDualInteriorPointBlock21< Real >::update(), ROL::PrimalDualInteriorPointBlock22< Real >::update(), ROL::ReducedDynamicObjective< Real >::updateSketch(), ROL::Constraint_Partitioned< Real >::value(), ROL::InteriorPoint::PrimalDualResidual< Real >::value(), ROL::InteriorPoint::MeritFunction< Real >::value(), ROL::PrimalDualInteriorPointResidual< Real >::value(), ROL::ReducedDynamicObjective< Real >::value(), ROL::SlacklessConstraint< Real >::zeroSlack(), and ROL::SlacklessObjective< Real >::zeroSlack().

template<class Real>
ROL::Ptr<Vector<Real> > ROL::PartitionedVector< Real >::get ( size_type  i)
inline

Definition at line 225 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::set ( size_type  i,
const V x 
)
inline

Definition at line 229 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
void ROL::PartitionedVector< Real >::zero ( size_type  i)
inline

Definition at line 233 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

template<class Real>
size_type ROL::PartitionedVector< Real >::numVectors ( ) const
inline
template<class Real>
static Ptr<PartitionedVector> ROL::PartitionedVector< Real >::create ( std::initializer_list< Vp vs)
inlinestatic
template<class Real>
static Ptr<PartitionedVector> ROL::PartitionedVector< Real >::create ( const V x,
size_type  N 
)
inlinestatic

Definition at line 250 of file ROL_PartitionedVector.hpp.

References ROL::Vector< Real >::clone().

Member Data Documentation

template<class Real>
const std::vector<Vp> ROL::PartitionedVector< Real >::vecs_
private
template<class Real>
std::vector<Vp> ROL::PartitionedVector< Real >::dual_vecs_
mutableprivate
template<class Real>
ROL::Ptr<PV> ROL::PartitionedVector< Real >::dual_pvec_
mutableprivate

Definition at line 35 of file ROL_PartitionedVector.hpp.

Referenced by ROL::PartitionedVector< Real >::dual().


The documentation for this class was generated from the following file: