ROL
|
#include <test_04.hpp>
Public Member Functions | |
Constraint_BurgersControl (const ROL::Ptr< BurgersFEM< Real > > &fem, const bool useHessian=true) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (int nx=128, Real nu=1.e-2, Real u0=1.0, Real u1=0.0, Real f=0.0) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (int nx=128, int nt=100, Real T=1, Real nu=1.e-2, Real u0=0.0, Real u1=0.0, Real f=0.0) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | solve (ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Given \(z\), solve \(c(u,z)=0\) for \(u\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &hwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (ROL::Ptr< BurgersFEM< Real > > &fem, bool useHessian=true) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (int nx=128) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | solve (ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Given \(z\), solve \(c(u,z)=0\) for \(u\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (ROL::Ptr< BurgersFEM< Real > > &fem, bool useHessian=true) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (ROL::Ptr< BurgersFEM< Real > > &fem, bool useHessian=true) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (ROL::Ptr< BurgersFEM< Real > > &fem, bool useHessian=true) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Constraint_BurgersControl (int nx=128) | |
void | value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More... | |
void | solve (ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Given \(z\), solve \(c(u,z)=0\) for \(u\). More... | |
void | applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More... | |
void | applyInverseJacobian_1 (ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More... | |
void | applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More... | |
void | applyAdjointJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More... | |
void | applyInverseAdjointJacobian_1 (ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More... | |
void | applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More... | |
void | applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol) |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More... | |
Public Member Functions inherited from ROL::Constraint_SimOpt< Real > | |
Constraint_SimOpt () | |
virtual void | update (const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | update (const Vector< Real > &u, const Vector< Real > &z, UpdateType type, int iter=-1) |
virtual void | update_1 (const Vector< Real > &u, bool flag=true, int iter=-1) |
Update constraint functions with respect to Sim variable. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | update_1 (const Vector< Real > &u, UpdateType type, int iter=-1) |
virtual void | update_2 (const Vector< Real > &z, bool flag=true, int iter=-1) |
Update constraint functions with respect to Opt variable. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | update_2 (const Vector< Real > &z, UpdateType type, int iter=-1) |
virtual void | solve_update (const Vector< Real > &u, const Vector< Real > &z, UpdateType type, int iter=-1) |
Update SimOpt constraint during solve (disconnected from optimization updates). More... | |
virtual void | setSolveParameters (ParameterList &parlist) |
Set solve parameters. More... | |
virtual void | applyAdjointJacobian_1 (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More... | |
virtual void | applyAdjointJacobian_2 (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C})\), to vector \(v\). In general, this preconditioner satisfies the following relationship:
\[ c'(x) c'(x)^* P(x) v \approx v \,. \] It is used by the solveAugmentedSystem method. More... | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | value (Vector< Real > &c, const Vector< Real > &x, Real &tol) |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
virtual void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahwv, const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
virtual Real | checkSolve (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &c, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian_1 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout) |
Check the consistency of the Jacobian and its adjoint. This is the primary interface. More... | |
virtual Real | checkAdjointConsistencyJacobian_1 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
Check the consistency of the Jacobian and its adjoint. This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More... | |
virtual Real | checkAdjointConsistencyJacobian_2 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout) |
Check the consistency of the Jacobian and its adjoint. This is the primary interface. More... | |
virtual Real | checkAdjointConsistencyJacobian_2 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
Check the consistency of the Jacobian and its adjoint. This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More... | |
virtual Real | checkInverseJacobian_1 (const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkInverseAdjointJacobian_1 (const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout) |
std::vector< std::vector< Real > > | checkApplyJacobian_1 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
std::vector< std::vector< Real > > | checkApplyJacobian_1 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
std::vector< std::vector< Real > > | checkApplyJacobian_2 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
std::vector< std::vector< Real > > | checkApplyJacobian_2 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_11 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_11 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_21 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
\( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More... | |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_21 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
\( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More... | |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_12 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
\( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More... | |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_12 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_22 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
std::vector< std::vector< Real > > | checkApplyAdjointHessian_22 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Member Functions | |
Real | compute_norm (const std::vector< Real > &r) |
Real | dot (const std::vector< Real > &x, const std::vector< Real > &y) |
void | update (std::vector< Real > &u, const std::vector< Real > &s, const Real alpha=1.0) |
void | scale (std::vector< Real > &u, const Real alpha=0.0) |
void | compute_residual (std::vector< Real > &r, const std::vector< Real > &u, const std::vector< Real > &z) |
void | compute_pde_jacobian (std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &u) |
void | linear_solve (std::vector< Real > &u, std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &r, const bool transpose=false) |
Real | compute_norm (const std::vector< Real > &r) |
Real | dot (const std::vector< Real > &x, const std::vector< Real > &y) |
void | update (std::vector< Real > &u, const std::vector< Real > &s, const Real alpha=1.0) |
void | scale (std::vector< Real > &u, const Real alpha=0.0) |
void | compute_residual (std::vector< Real > &r, const std::vector< Real > &uold, const std::vector< Real > &zold, const std::vector< Real > &unew, const std::vector< Real > &znew) |
void | compute_pde_jacobian (std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &u) |
void | apply_pde_jacobian_new (std::vector< Real > &jv, const std::vector< Real > &v, const std::vector< Real > &u, bool adjoint=false) |
void | apply_pde_jacobian_old (std::vector< Real > &jv, const std::vector< Real > &v, const std::vector< Real > &u, bool adjoint=false) |
void | apply_pde_jacobian (std::vector< Real > &jv, const std::vector< Real > &vold, const std::vector< Real > &uold, const std::vector< Real > &vnew, const std::vector< Real > unew, bool adjoint=false) |
void | apply_pde_hessian (std::vector< Real > &hv, const std::vector< Real > &wold, const std::vector< Real > &vold, const std::vector< Real > &wnew, const std::vector< Real > &vnew) |
void | apply_control_jacobian (std::vector< Real > &jv, const std::vector< Real > &v, bool adjoint=false) |
void | run_newton (std::vector< Real > &u, const std::vector< Real > &znew, const std::vector< Real > &uold, const std::vector< Real > &zold) |
void | linear_solve (std::vector< Real > &u, const std::vector< Real > &dl, const std::vector< Real > &d, const std::vector< Real > &du, const std::vector< Real > &r, const bool transpose=false) |
Real | compute_norm (const std::vector< Real > &r) |
Real | dot (const std::vector< Real > &x, const std::vector< Real > &y) |
void | update (std::vector< Real > &u, const std::vector< Real > &s, const Real alpha=1.0) |
void | scale (std::vector< Real > &u, const Real alpha=0.0) |
void | compute_residual (std::vector< Real > &r, const std::vector< Real > &u, const std::vector< Real > &z) |
void | compute_pde_jacobian (std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &u) |
void | linear_solve (std::vector< Real > &u, std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &r, const bool transpose=false) |
Real | compute_norm (const std::vector< Real > &r) |
Real | dot (const std::vector< Real > &x, const std::vector< Real > &y) |
void | update (std::vector< Real > &u, const std::vector< Real > &s, const Real alpha=1.0) |
void | scale (std::vector< Real > &u, const Real alpha=0.0) |
void | compute_residual (std::vector< Real > &r, const std::vector< Real > &u, const std::vector< Real > &z) |
void | compute_pde_jacobian (std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &u) |
void | linear_solve (std::vector< Real > &u, std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &r, const bool transpose=false) |
Private Attributes | |
ROL::Ptr< BurgersFEM< Real > > | fem_ |
bool | useHessian_ |
int | nx_ |
Real | dx_ |
Real | nu_ |
Real | u0_ |
Real | u1_ |
Real | f_ |
unsigned | nx_ |
unsigned | nt_ |
Real | T_ |
Real | dt_ |
std::vector< Real > | u_init_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Protected Attributes inherited from ROL::Constraint_SimOpt< Real > | |
Real | atol_ |
Real | rtol_ |
Real | stol_ |
Real | factor_ |
Real | decr_ |
int | maxit_ |
bool | print_ |
bool | zero_ |
int | solverType_ |
bool | firstSolve_ |
Definition at line 670 of file test_04.hpp.
|
private |
Definition at line 673 of file test_04.hpp.
|
private |
Definition at line 674 of file test_04.hpp.
|
private |
Definition at line 676 of file test_04.hpp.
|
private |
Definition at line 677 of file test_04.hpp.
|
private |
Definition at line 679 of file test_04.hpp.
|
private |
Definition at line 680 of file test_04.hpp.
|
private |
Definition at line 854 of file example_04.hpp.
|
private |
Definition at line 855 of file example_04.hpp.
|
private |
Definition at line 857 of file example_04.hpp.
|
private |
Definition at line 858 of file example_04.hpp.
|
private |
Definition at line 860 of file example_04.hpp.
|
private |
Definition at line 861 of file example_04.hpp.
|
private |
Definition at line 858 of file example_06.hpp.
|
private |
Definition at line 859 of file example_06.hpp.
|
private |
Definition at line 861 of file example_06.hpp.
|
private |
Definition at line 862 of file example_06.hpp.
|
private |
Definition at line 864 of file example_06.hpp.
|
private |
Definition at line 865 of file example_06.hpp.
|
private |
Definition at line 862 of file example_07.hpp.
|
private |
Definition at line 863 of file example_07.hpp.
|
private |
Definition at line 865 of file example_07.hpp.
|
private |
Definition at line 866 of file example_07.hpp.
|
private |
Definition at line 868 of file example_07.hpp.
|
private |
Definition at line 869 of file example_07.hpp.
|
private |
Definition at line 871 of file example_07.hpp.
|
private |
Definition at line 662 of file example_08.hpp.
|
private |
Definition at line 663 of file example_08.hpp.
|
private |
Definition at line 665 of file example_08.hpp.
|
private |
Definition at line 666 of file example_08.hpp.
|
private |
Definition at line 668 of file example_08.hpp.
|
private |
Definition at line 669 of file example_08.hpp.
|
inline |
Definition at line 686 of file test_04.hpp.
|
inline |
Definition at line 142 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_.
|
inline |
Definition at line 400 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nx_, and Constraint_BurgersControl< Real >::u_init_.
|
inline |
Definition at line 867 of file example_04.hpp.
|
inline |
Definition at line 156 of file example_05.hpp.
|
inline |
Definition at line 871 of file example_06.hpp.
|
inline |
Definition at line 877 of file example_07.hpp.
|
inline |
Definition at line 675 of file example_08.hpp.
|
inline |
Definition at line 158 of file example_10.hpp.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 690 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
Referenced by Constraint_BurgersControl< Real >::solve().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 702 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 716 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 730 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 744 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 758 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 772 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
Referenced by main().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 786 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 807 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 827 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 847 of file test_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlineprivate |
Definition at line 30 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dot().
Referenced by Constraint_BurgersControl< Real >::run_newton().
|
inlineprivate |
Definition at line 34 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
Referenced by Constraint_BurgersControl< Real >::compute_norm(), and Constraint_BurgersControl< Real >::linear_solve().
|
inlineprivate |
Definition at line 53 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), and Constraint_BurgersControl< Real >::run_newton().
|
inlineprivate |
Definition at line 59 of file burgers-control/example_02.hpp.
|
inlineprivate |
Definition at line 65 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::f_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
Referenced by Constraint_BurgersControl< Real >::run_newton(), and Constraint_BurgersControl< Real >::value().
|
inlineprivate |
Definition at line 97 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
Referenced by Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), and Constraint_BurgersControl< Real >::run_newton().
|
inlineprivate |
Definition at line 122 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::nx_.
Referenced by Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), and Constraint_BurgersControl< Real >::run_newton().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 147 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::compute_residual().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 158 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 186 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 202 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 221 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 249 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 278 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 295 of file burgers-control/example_02.hpp.
References Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 319 of file burgers-control/example_02.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 323 of file burgers-control/example_02.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 327 of file burgers-control/example_02.hpp.
References ROL::Vector< Real >::zero().
|
inlineprivate |
Definition at line 52 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dot().
|
inlineprivate |
Definition at line 56 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 75 of file example_03.hpp.
|
inlineprivate |
Definition at line 81 of file example_03.hpp.
|
inlineprivate |
Definition at line 87 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::f_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
|
inlineprivate |
Definition at line 123 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
|
inlineprivate |
Definition at line 148 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
|
inlineprivate |
Definition at line 178 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
Referenced by Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), and Constraint_BurgersControl< Real >::applyInverseJacobian_1().
|
inlineprivate |
Definition at line 208 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, Constraint_BurgersControl< Real >::nu_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::u0_, and Constraint_BurgersControl< Real >::u1_.
Referenced by Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), and Constraint_BurgersControl< Real >::applyJacobian_1().
|
inlineprivate |
Definition at line 247 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dt_, and Constraint_BurgersControl< Real >::nx_.
Referenced by Constraint_BurgersControl< Real >::applyAdjointHessian_11().
|
inlineprivate |
Definition at line 263 of file example_03.hpp.
References dim, Constraint_BurgersControl< Real >::dt_, Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
Referenced by Constraint_BurgersControl< Real >::applyAdjointJacobian_2(), and Constraint_BurgersControl< Real >::applyJacobian_2().
|
inlineprivate |
Definition at line 291 of file example_03.hpp.
References Constraint_BurgersControl< Real >::compute_norm(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::compute_residual(), Constraint_BurgersControl< Real >::linear_solve(), Constraint_BurgersControl< Real >::nx_, and Constraint_BurgersControl< Real >::update().
Referenced by Constraint_BurgersControl< Real >::solve().
|
inlineprivate |
Definition at line 338 of file example_03.hpp.
References Constraint_BurgersControl< Real >::dot(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 414 of file example_03.hpp.
References Constraint_BurgersControl< Real >::compute_residual(), Constraint_BurgersControl< Real >::nt_, Constraint_BurgersControl< Real >::nx_, and Constraint_BurgersControl< Real >::u_init_.
|
inlinevirtual |
Given \(z\), solve \(c(u,z)=0\) for \(u\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in,out] | u | is the solution vector; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
The defualt implementation is Newton's method globalized with a backtracking line search.
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 453 of file example_03.hpp.
References ROL::Vector< Real >::norm(), Constraint_BurgersControl< Real >::nt_, Constraint_BurgersControl< Real >::nx_, Constraint_BurgersControl< Real >::run_newton(), Constraint_BurgersControl< Real >::u_init_, and Constraint_BurgersControl< Real >::value().
Referenced by main().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 487 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::nt_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 514 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_control_jacobian(), Constraint_BurgersControl< Real >::nt_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 543 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), Constraint_BurgersControl< Real >::nt_, Constraint_BurgersControl< Real >::nx_, and Constraint_BurgersControl< Real >::update().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 579 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::nt_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 604 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_control_jacobian(), Constraint_BurgersControl< Real >::nt_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 634 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), Constraint_BurgersControl< Real >::nt_, Constraint_BurgersControl< Real >::nx_, and Constraint_BurgersControl< Real >::update().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 668 of file example_03.hpp.
References Constraint_BurgersControl< Real >::apply_pde_hessian(), Constraint_BurgersControl< Real >::nt_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 693 of file example_03.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 697 of file example_03.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 701 of file example_03.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 870 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 883 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 896 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 909 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 922 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 935 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 948 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_.
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 961 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 981 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1000 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1019 of file example_04.hpp.
References Constraint_BurgersControl< Real >::fem_, Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlineprivate |
Definition at line 37 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dot().
|
inlineprivate |
Definition at line 41 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 60 of file example_05.hpp.
|
inlineprivate |
Definition at line 66 of file example_05.hpp.
|
inlineprivate |
Definition at line 72 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 109 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 136 of file example_05.hpp.
References Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 158 of file example_05.hpp.
References Constraint_BurgersControl< Real >::compute_residual().
|
inlinevirtual |
Given \(z\), solve \(c(u,z)=0\) for \(u\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in,out] | u | is the solution vector; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
The defualt implementation is Newton's method globalized with a backtracking line search.
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 169 of file example_05.hpp.
References ROL::Constraint_SimOpt< Real >::solve().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 176 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 209 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 225 of file example_05.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 244 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 277 of file example_05.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 306 of file example_05.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 323 of file example_05.hpp.
References Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 347 of file example_05.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 351 of file example_05.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 355 of file example_05.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 874 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 890 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 908 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 926 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 944 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 962 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 980 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 998 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1023 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1047 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1071 of file example_06.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 880 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 896 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 914 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 932 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 950 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 968 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 986 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1004 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1029 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1053 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 1077 of file example_07.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 678 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 694 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 712 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 730 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 748 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 766 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 784 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, and ROL::Constraint< Real >::getParameter().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 802 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 827 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 851 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 875 of file example_08.hpp.
References Constraint_BurgersControl< Real >::fem_, ROL::Constraint< Real >::getParameter(), Constraint_BurgersControl< Real >::useHessian_, and ROL::Vector< Real >::zero().
|
inlineprivate |
Definition at line 39 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dot().
|
inlineprivate |
Definition at line 43 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 62 of file example_10.hpp.
|
inlineprivate |
Definition at line 68 of file example_10.hpp.
|
inlineprivate |
Definition at line 74 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 111 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlineprivate |
Definition at line 138 of file example_10.hpp.
References Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in] | u | is the constraint argument; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).
Implements ROL::Constraint_SimOpt< Real >.
Definition at line 160 of file example_10.hpp.
References Constraint_BurgersControl< Real >::compute_residual().
|
inlinevirtual |
Given \(z\), solve \(c(u,z)=0\) for \(u\).
[out] | c | is the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector |
[in,out] | u | is the solution vector; a simulation-space vector |
[in] | z | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
The defualt implementation is Newton's method globalized with a backtracking line search.
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 171 of file example_10.hpp.
References ROL::Constraint_SimOpt< Real >::solve().
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; an simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#227, where
\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 178 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b \form#221; a constraint-space vector @param[in] v is an optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#230, where
\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 211 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\).
@param[out] ijv is the result of applying the inverse constraint Jacobian to @b v at @b \form#221; a simulation-space vector @param[in] v is a constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#233, where
\(v \in \mathcal{C}\), \(\mathsf{ijv} \in \mathcal{U}\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 227 of file example_10.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#236, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 246 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, ROL::Constraint< Real >::getParameter(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b \form#221; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#239, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 279 of file example_10.hpp.
References Constraint_BurgersControl< Real >::dx_, and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\).
@param[out] iajv is the result of applying the inverse adjoint of the constraint Jacobian to @b v at @b (u,z); a dual constraint-space vector @param[in] v is a dual simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#242, where
\(v \in \mathcal{U}^*\), \(\mathsf{iajv} \in \mathcal{C}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 308 of file example_10.hpp.
References Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::linear_solve(), and Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#247, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 325 of file example_10.hpp.
References Constraint_BurgersControl< Real >::nx_.
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a simulation-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#251, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 349 of file example_10.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual simulation-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#254, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 353 of file example_10.hpp.
References ROL::Vector< Real >::zero().
|
inlinevirtual |
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).
@param[out] ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b \form#221 to the vector @b \form#245 in direction @b \form#245; a dual optimization-space vector @param[in] w is the direction vector; a dual constraint-space vector @param[in] v is a optimization-space vector @param[in] u is the constraint argument; a simulation-space vector @param[in] z is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#256, where
\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).
Reimplemented from ROL::Constraint_SimOpt< Real >.
Definition at line 357 of file example_10.hpp.
References ROL::Vector< Real >::zero().
|
private |
Definition at line 682 of file test_04.hpp.
Referenced by Constraint_BurgersControl< Real >::applyAdjointHessian_11(), Constraint_BurgersControl< Real >::applyAdjointHessian_12(), Constraint_BurgersControl< Real >::applyAdjointHessian_21(), Constraint_BurgersControl< Real >::applyAdjointHessian_22(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyAdjointJacobian_2(), Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_2(), and Constraint_BurgersControl< Real >::value().
|
private |
Definition at line 683 of file test_04.hpp.
Referenced by Constraint_BurgersControl< Real >::applyAdjointHessian_11(), Constraint_BurgersControl< Real >::applyAdjointHessian_12(), Constraint_BurgersControl< Real >::applyAdjointHessian_21(), and Constraint_BurgersControl< Real >::applyAdjointHessian_22().
|
private |
Definition at line 22 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_control_jacobian(), Constraint_BurgersControl< Real >::apply_pde_hessian(), Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::applyAdjointHessian_11(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyAdjointJacobian_2(), Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_2(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::compute_residual(), Constraint_BurgersControl< Real >::Constraint_BurgersControl(), Constraint_BurgersControl< Real >::dot(), Constraint_BurgersControl< Real >::linear_solve(), Constraint_BurgersControl< Real >::run_newton(), Constraint_BurgersControl< Real >::solve(), and Constraint_BurgersControl< Real >::value().
|
private |
Definition at line 23 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_control_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyAdjointJacobian_2(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_2(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::compute_residual(), Constraint_BurgersControl< Real >::Constraint_BurgersControl(), and Constraint_BurgersControl< Real >::dot().
|
private |
Definition at line 24 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), and Constraint_BurgersControl< Real >::compute_residual().
|
private |
Definition at line 25 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), and Constraint_BurgersControl< Real >::compute_residual().
|
private |
Definition at line 26 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), and Constraint_BurgersControl< Real >::compute_residual().
|
private |
Definition at line 27 of file burgers-control/example_02.hpp.
Referenced by Constraint_BurgersControl< Real >::compute_residual().
|
private |
Definition at line 38 of file example_03.hpp.
|
private |
Definition at line 39 of file example_03.hpp.
Referenced by Constraint_BurgersControl< Real >::applyAdjointHessian_11(), Constraint_BurgersControl< Real >::applyAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyAdjointJacobian_2(), Constraint_BurgersControl< Real >::applyInverseAdjointJacobian_1(), Constraint_BurgersControl< Real >::applyInverseJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_1(), Constraint_BurgersControl< Real >::applyJacobian_2(), Constraint_BurgersControl< Real >::solve(), and Constraint_BurgersControl< Real >::value().
|
private |
Definition at line 42 of file example_03.hpp.
|
private |
Definition at line 43 of file example_03.hpp.
Referenced by Constraint_BurgersControl< Real >::apply_control_jacobian(), Constraint_BurgersControl< Real >::apply_pde_hessian(), Constraint_BurgersControl< Real >::apply_pde_jacobian(), Constraint_BurgersControl< Real >::apply_pde_jacobian_new(), Constraint_BurgersControl< Real >::apply_pde_jacobian_old(), Constraint_BurgersControl< Real >::compute_pde_jacobian(), Constraint_BurgersControl< Real >::compute_residual(), and Constraint_BurgersControl< Real >::Constraint_BurgersControl().
|
private |
Definition at line 49 of file example_03.hpp.
Referenced by Constraint_BurgersControl< Real >::Constraint_BurgersControl(), Constraint_BurgersControl< Real >::solve(), and Constraint_BurgersControl< Real >::value().