10 #include "Teuchos_LAPACK.hpp"
11 #include "Teuchos_GlobalMPISession.hpp"
12 #include "Teuchos_Comm.hpp"
13 #include "Teuchos_DefaultComm.hpp"
14 #include "Teuchos_CommHelpers.hpp"
17 #include "ROL_ParameterList.hpp"
31 #include "ROL_StdTeuchosBatchManager.hpp"
40 return std::sqrt(
dot(r,r));
43 Real
dot(
const std::vector<Real> &x,
const std::vector<Real> &y) {
45 Real c = (((int)x.size()==
nx_) ? 4.0 : 2.0);
46 for (
unsigned i=0; i<x.size(); i++) {
48 ip +=
dx_/6.0*(c*x[i] + x[i+1])*y[i];
50 else if ( i == x.size()-1 ) {
51 ip +=
dx_/6.0*(x[i-1] + c*x[i])*y[i];
54 ip +=
dx_/6.0*(x[i-1] + 4.0*x[i] + x[i+1])*y[i];
62 void update(std::vector<Real> &u,
const std::vector<Real> &s,
const Real alpha=1.0) {
63 for (
unsigned i=0; i<u.size(); i++) {
68 void scale(std::vector<Real> &u,
const Real alpha=0.0) {
69 for (
unsigned i=0; i<u.size(); i++) {
75 const std::vector<Real> &z) {
76 r.clear(); r.resize(
nx_,0.0);
77 const std::vector<Real> param =
79 Real nu = std::pow(10.0,param[0]-2.0);
80 Real f = param[1]/100.0;
81 Real u0 = 1.0+param[2]/1000.0;
82 Real u1 = param[3]/1000.0;
83 for (
int i=0; i<
nx_; i++) {
86 r[i] = nu/
dx_*(2.0*u[i]-u[i+1]);
89 r[i] = nu/
dx_*(2.0*u[i]-u[i-1]);
92 r[i] = nu/
dx_*(2.0*u[i]-u[i-1]-u[i+1]);
96 r[i] += u[i+1]*(u[i]+u[i+1])/6.0;
99 r[i] -= u[i-1]*(u[i-1]+u[i])/6.0;
102 r[i] -=
dx_/6.0*(z[i]+4.0*z[i+1]+z[i+2]);
107 r[ 0] -= u0*u[ 0]/6.0 + u0*u0/6.0 + nu*u0/
dx_;
108 r[nx_-1] += u1*u[nx_-1]/6.0 + u1*u1/6.0 - nu*u1/
dx_;
112 const std::vector<Real> &u) {
113 const std::vector<Real> param =
115 Real nu = std::pow(10.0,param[0]-2.0);
116 Real u0 = 1.0+param[2]/1000.0;
117 Real u1 = param[3]/1000.0;
119 d.clear(); d.resize(
nx_,nu*2.0/
dx_);
120 dl.clear(); dl.resize(
nx_-1,-nu/
dx_);
121 du.clear(); du.resize(
nx_-1,-nu/
dx_);
123 for (
int i=0; i<
nx_; i++) {
125 dl[i] += (-2.0*u[i]-u[i+1])/6.0;
130 du[i-1] += (u[i-1]+2.0*u[i])/6.0;
138 void linear_solve(std::vector<Real> &u, std::vector<Real> &dl, std::vector<Real> &d, std::vector<Real> &du,
139 const std::vector<Real> &r,
const bool transpose =
false) {
140 u.assign(r.begin(),r.end());
142 Teuchos::LAPACK<int,Real> lp;
143 std::vector<Real> du2(
nx_-2,0.0);
144 std::vector<int> ipiv(
nx_,0);
148 lp.GTTRF(
nx_,&dl[0],&d[0],&du[0],&du2[0],&ipiv[0],&info);
153 lp.GTTRS(trans,
nx_,nhrs,&dl[0],&d[0],&du[0],&du2[0],&ipiv[0],&u[0],ldb,&info);
162 ROL::Ptr<std::vector<Real> > cp =
164 ROL::Ptr<const std::vector<Real> > up =
166 ROL::Ptr<const std::vector<Real> > zp =
172 ROL::Ptr<std::vector<Real> > up =
174 up->assign(up->size(),
static_cast<Real
>(1));
180 ROL::Ptr<std::vector<Real> > jvp =
182 ROL::Ptr<const std::vector<Real> > vp =
184 ROL::Ptr<const std::vector<Real> > up =
186 ROL::Ptr<const std::vector<Real> > zp =
188 const std::vector<Real> param =
190 Real nu = std::pow(10.0,param[0]-2.0);
191 Real u0 = 1.0+param[2]/1000.0;
192 Real u1 = param[3]/1000.0;
194 for (
int i = 0; i <
nx_; i++) {
195 (*jvp)[i] = nu/
dx_*2.0*(*vp)[i];
197 (*jvp)[i] += -nu/
dx_*(*vp)[i-1]
198 -(*up)[i-1]/6.0*(*vp)[i]
199 -((*up)[i]+2.0*(*up)[i-1])/6.0*(*vp)[i-1];
202 (*jvp)[i] += -nu/
dx_*(*vp)[i+1]
203 +(*up)[i+1]/6.0*(*vp)[i]
204 +((*up)[i]+2.0*(*up)[i+1])/6.0*(*vp)[i+1];
207 (*jvp)[ 0] -= u0/6.0*(*vp)[0];
208 (*jvp)[nx_-1] += u1/6.0*(*vp)[nx_-1];
213 ROL::Ptr<std::vector<Real> > jvp =
215 ROL::Ptr<const std::vector<Real>> vp =
217 ROL::Ptr<const std::vector<Real>> up =
219 ROL::Ptr<const std::vector<Real>> zp =
221 for (
int i=0; i<
nx_; i++) {
223 (*jvp)[i] = -
dx_/6.0*((*vp)[i]+4.0*(*vp)[i+1]+(*vp)[i+2]);
229 ROL::Ptr<std::vector<Real> > ijvp =
231 ROL::Ptr<const std::vector<Real> > vp =
233 ROL::Ptr<const std::vector<Real> > up =
235 ROL::Ptr<const std::vector<Real> > zp =
238 std::vector<Real> d(
nx_,0.0);
239 std::vector<Real> dl(
nx_-1,0.0);
240 std::vector<Real> du(
nx_-1,0.0);
248 ROL::Ptr<std::vector<Real> > jvp =
250 ROL::Ptr<const std::vector<Real> > vp =
252 ROL::Ptr<const std::vector<Real> > up =
254 ROL::Ptr<const std::vector<Real> > zp =
256 const std::vector<Real> param =
258 Real nu = std::pow(10.0,param[0]-2.0);
259 Real u0 = 1.0+param[2]/1000.0;
260 Real u1 = param[3]/1000.0;
262 for (
int i = 0; i <
nx_; i++) {
263 (*jvp)[i] = nu/
dx_*2.0*(*vp)[i];
265 (*jvp)[i] += -nu/
dx_*(*vp)[i-1]
266 -(*up)[i-1]/6.0*(*vp)[i]
267 +((*up)[i-1]+2.0*(*up)[i])/6.0*(*vp)[i-1];
270 (*jvp)[i] += -nu/
dx_*(*vp)[i+1]
271 +(*up)[i+1]/6.0*(*vp)[i]
272 -((*up)[i+1]+2.0*(*up)[i])/6.0*(*vp)[i+1];
275 (*jvp)[ 0] -= u0/6.0*(*vp)[0];
276 (*jvp)[nx_-1] += u1/6.0*(*vp)[nx_-1];
281 ROL::Ptr<std::vector<Real> > jvp =
283 ROL::Ptr<const std::vector<Real> > vp =
285 ROL::Ptr<const std::vector<Real> > up =
287 ROL::Ptr<const std::vector<Real> > zp =
289 for (
int i=0; i<
nx_+2; i++) {
291 (*jvp)[i] = -
dx_/6.0*(*vp)[i];
294 (*jvp)[i] = -
dx_/6.0*(4.0*(*vp)[i-1]+(*vp)[i]);
296 else if ( i == nx_ ) {
297 (*jvp)[i] = -
dx_/6.0*(4.0*(*vp)[i-1]+(*vp)[i-2]);
299 else if ( i == nx_+1 ) {
300 (*jvp)[i] = -
dx_/6.0*(*vp)[i-2];
303 (*jvp)[i] = -
dx_/6.0*((*vp)[i-2]+4.0*(*vp)[i-1]+(*vp)[i]);
310 ROL::Ptr<std::vector<Real> > iajvp =
312 ROL::Ptr<const std::vector<Real> > vp =
314 ROL::Ptr<const std::vector<Real>> up =
317 std::vector<Real> d(
nx_,0.0);
318 std::vector<Real> du(
nx_-1,0.0);
319 std::vector<Real> dl(
nx_-1,0.0);
327 ROL::Ptr<std::vector<Real> > ahwvp =
329 ROL::Ptr<const std::vector<Real> > wp =
331 ROL::Ptr<const std::vector<Real> > vp =
333 ROL::Ptr<const std::vector<Real> > up =
335 ROL::Ptr<const std::vector<Real> > zp =
337 for (
int i=0; i<
nx_; i++) {
341 (*ahwvp)[i] += ((*wp)[i]*(*vp)[i+1] - (*wp)[i+1]*(2.0*(*vp)[i]+(*vp)[i+1]))/6.0;
344 (*ahwvp)[i] += ((*wp)[i-1]*((*vp)[i-1]+2.0*(*vp)[i]) - (*wp)[i]*(*vp)[i-1])/6.0;
378 case 1: val = ((x<0.5) ? 1.0 : 0.0);
break;
379 case 2: val = 1.0;
break;
380 case 3: val = std::abs(std::sin(8.0*M_PI*x));
break;
381 case 4: val = std::exp(-0.5*(x-0.5)*(x-0.5));
break;
386 Real
dot(
const std::vector<Real> &x,
const std::vector<Real> &y) {
388 Real c = (((int)x.size()==
nx_) ? 4.0 : 2.0);
389 for (
unsigned i=0; i<x.size(); i++) {
391 ip +=
dx_/6.0*(c*x[i] + x[i+1])*y[i];
393 else if ( i == x.size()-1 ) {
394 ip +=
dx_/6.0*(x[i-1] + c*x[i])*y[i];
397 ip +=
dx_/6.0*(x[i-1] + 4.0*x[i] + x[i+1])*y[i];
403 void apply_mass(std::vector<Real> &Mu,
const std::vector<Real> &u ) {
404 Mu.resize(u.size(),0.0);
405 Real c = (((int)u.size()==
nx_) ? 4.0 : 2.0);
406 for (
unsigned i=0; i<u.size(); i++) {
408 Mu[i] =
dx_/6.0*(c*u[i] + u[i+1]);
410 else if ( i == u.size()-1 ) {
411 Mu[i] =
dx_/6.0*(u[i-1] + c*u[i]);
414 Mu[i] =
dx_/6.0*(u[i-1] + 4.0*u[i] + u[i+1]);
425 dx_ = 1.0/((Real)nx+1.0);
431 ROL::Ptr<const std::vector<Real> > up =
433 ROL::Ptr<const std::vector<Real> > zp =
436 Real res1 = 0.0, res2 = 0.0, res3 = 0.0;
437 Real valu = 0.0, valz =
dot(*zp,*zp);
438 for (
int i=0; i<
nx_; i++) {
442 valu +=
dx_/6.0*(4.0*res1 + res2)*res1;
444 else if ( i == nx_-1 ) {
447 valu += dx_/6.0*(res1 + 4.0*res2)*res2;
453 valu += dx_/6.0*(res1 + 4.0*res2 + res3)*res2;
456 return 0.5*(valu +
alpha_*valz);
461 ROL::Ptr<std::vector<Real> > gup =
464 ROL::Ptr<const std::vector<Real> > up =
466 ROL::Ptr<const std::vector<Real> > zp =
469 std::vector<Real> diff(
nx_,0.0);
470 for (
int i=0; i<
nx_; i++) {
478 ROL::Ptr<std::vector<Real> > gzp =
481 ROL::Ptr<const std::vector<Real> > up =
483 ROL::Ptr<const std::vector<Real> > zp =
486 for (
int i=0; i<
nx_+2; i++) {
488 (*gzp)[i] =
alpha_*
dx_/6.0*(2.0*(*zp)[i]+(*zp)[i+1]);
491 (*gzp)[i] =
alpha_*
dx_/6.0*(2.0*(*zp)[i]+(*zp)[i-1]);
494 (*gzp)[i] =
alpha_*
dx_/6.0*((*zp)[i-1]+4.0*(*zp)[i]+(*zp)[i+1]);
501 ROL::Ptr<std::vector<Real> > hvup =
504 ROL::Ptr<const std::vector<Real> > vup =
522 ROL::Ptr<std::vector<Real> > hvzp =
525 ROL::Ptr<const std::vector<Real> > vzp =
528 for (
int i=0; i<
nx_+2; i++) {
530 (*hvzp)[i] =
alpha_*
dx_/6.0*(2.0*(*vzp)[i]+(*vzp)[i+1]);
533 (*hvzp)[i] =
alpha_*
dx_/6.0*(2.0*(*vzp)[i]+(*vzp)[i-1]);
536 (*hvzp)[i] =
alpha_*
dx_/6.0*((*vzp)[i-1]+4.0*(*vzp)[i]+(*vzp)[i+1]);
Provides the interface to evaluate simulation-based objective functions.
void applyAdjointJacobian_1(ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the adjoint of the partial constraint Jacobian at , , to the vector . This is the primary inter...
Real evaluate_target(Real x)
void applyAdjointHessian_12(ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at...
void solve(ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Given , solve for .
Contains definitions of custom data types in ROL.
void applyAdjointHessian_11(ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at ...
const std::vector< Real > getParameter(void) const
void applyInverseAdjointJacobian_1(ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the inverse of the adjoint of the partial constraint Jacobian at , , to the vector ...
virtual void zero()
Set to zero vector.
Defines the linear algebra or vector space interface.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
void hessVec_22(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Real value(const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Compute value.
void gradient_1(ROL::Vector< Real > &g, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Compute gradient with respect to first component.
void applyAdjointHessian_21(ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at...
void compute_pde_jacobian(std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &u)
Constraint_BurgersControl(int nx=128)
Real dot(const std::vector< Real > &x, const std::vector< Real > &y)
Objective_BurgersControl(Real alpha=1.e-4, int nx=128)
void applyJacobian_1(ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the partial constraint Jacobian at , , to the vector .
void hessVec_21(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
void hessVec_12(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
void gradient_2(ROL::Vector< Real > &g, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Compute gradient with respect to second component.
Real dot(const std::vector< Real > &x, const std::vector< Real > &y)
void applyInverseJacobian_1(ROL::Vector< Real > &ijv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the inverse partial constraint Jacobian at , , to the vector .
void compute_residual(std::vector< Real > &r, const std::vector< Real > &u, const std::vector< Real > &z)
void scale(std::vector< Real > &u, const Real alpha=0.0)
void hessVec_11(ROL::Vector< Real > &hv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply Hessian approximation to vector.
void applyJacobian_2(ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the partial constraint Jacobian at , , to the vector .
virtual void solve(Vector< Real > &c, Vector< Real > &u, const Vector< Real > &z, Real &tol)
Given , solve for .
void apply_mass(std::vector< Real > &Mu, const std::vector< Real > &u)
void applyAdjointHessian_22(ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian ...
Real compute_norm(const std::vector< Real > &r)
void update(std::vector< Real > &u, const std::vector< Real > &s, const Real alpha=1.0)
void applyAdjointJacobian_2(ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the adjoint of the partial constraint Jacobian at , , to vector . This is the primary interface...
Defines the constraint operator interface for simulation-based optimization.
void value(ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Evaluate the constraint operator at .
void linear_solve(std::vector< Real > &u, std::vector< Real > &dl, std::vector< Real > &d, std::vector< Real > &du, const std::vector< Real > &r, const bool transpose=false)