Intrepid2
Intrepid2_HDIV_TET_In_FEMDef.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid2 Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
38 // Mauro Perego (mperego@sandia.gov)
39 //
40 // ************************************************************************
41 // @HEADER
42 
49 #ifndef __INTREPID2_HDIV_TET_IN_FEM_DEF_HPP__
50 #define __INTREPID2_HDIV_TET_IN_FEM_DEF_HPP__
51 
54 
55 namespace Intrepid2 {
56 
57 // -------------------------------------------------------------------------------------
58 
59 namespace Impl {
60 
61 template<EOperator opType>
62 template<typename outputViewType,
63 typename inputViewType,
64 typename workViewType,
65 typename vinvViewType>
66 KOKKOS_INLINE_FUNCTION
67 void
68 Basis_HDIV_TET_In_FEM::Serial<opType>::
69 getValues( outputViewType output,
70  const inputViewType input,
71  workViewType work,
72  const vinvViewType coeffs ) {
73 
74  constexpr ordinal_type spaceDim = 3;
75  const ordinal_type
76  cardPn = coeffs.extent(0)/spaceDim,
77  card = coeffs.extent(1),
78  npts = input.extent(0);
79 
80  // compute order
81  ordinal_type order = 0;
82  for (ordinal_type p=0;p<=Parameters::MaxOrder;++p) {
83  if (card == CardinalityHDivTet(p)) {
84  order = p;
85  break;
86  }
87  }
88 
89  typedef typename Kokkos::DynRankView<typename workViewType::value_type, typename workViewType::memory_space> viewType;
90  auto vcprop = Kokkos::common_view_alloc_prop(work);
91  auto ptr = work.data();
92 
93  switch (opType) {
94  case OPERATOR_VALUE: {
95  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts);
96  workViewType dummyView;
97 
98  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
99  Serial<opType>::getValues(phis, input, dummyView, order);
100 
101  for (ordinal_type i=0;i<card;++i)
102  for (ordinal_type j=0;j<npts;++j)
103  for (ordinal_type d=0;d<spaceDim;++d) {
104  output.access(i,j,d) = 0.0;
105  for (ordinal_type k=0;k<cardPn;++k)
106  output.access(i,j,d) += coeffs(k+d*cardPn,i) * phis.access(k,j);
107  }
108  break;
109  }
110  case OPERATOR_DIV: {
111  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim);
112  ptr += card*npts*spaceDim*get_dimension_scalar(work);
113  const viewType workView(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim+1);
114 
115  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
116  Serial<OPERATOR_GRAD>::getValues(phis, input, workView, order);
117 
118  for (ordinal_type i=0;i<card;++i)
119  for (ordinal_type j=0;j<npts;++j) {
120  output.access(i,j) = 0.0;
121  for (ordinal_type k=0; k<cardPn; ++k)
122  for (ordinal_type d=0; d<spaceDim; ++d)
123  output.access(i,j) += coeffs(k+d*cardPn,i)*phis.access(k,j,d);
124  }
125  break;
126  }
127  default: {
128  INTREPID2_TEST_FOR_ABORT( true,
129  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented");
130  }
131  }
132 }
133 
134 template<typename SpT, ordinal_type numPtsPerEval,
135 typename outputValueValueType, class ...outputValueProperties,
136 typename inputPointValueType, class ...inputPointProperties,
137 typename vinvValueType, class ...vinvProperties>
138 void
139 Basis_HDIV_TET_In_FEM::
140 getValues( /* */ Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
141  const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
142  const Kokkos::DynRankView<vinvValueType, vinvProperties...> coeffs,
143  const EOperator operatorType) {
144  typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
145  typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
146  typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
147  typedef typename ExecSpace<typename inputPointViewType::execution_space,SpT>::ExecSpaceType ExecSpaceType;
148 
149  // loopSize corresponds to cardinality
150  const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
151  const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
152  const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
153  Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
154 
155  typedef typename inputPointViewType::value_type inputPointType;
156 
157  const ordinal_type cardinality = outputValues.extent(0);
158  const ordinal_type spaceDim = 3;
159 
160  auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
161  typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
162 
163  switch (operatorType) {
164  case OPERATOR_VALUE: {
165  workViewType work(Kokkos::view_alloc("Basis_HDIV_TET_In_FEM::getValues::work", vcprop), cardinality, inputPoints.extent(0));
166  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
167  OPERATOR_VALUE,numPtsPerEval> FunctorType;
168  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
169  break;
170  }
171  case OPERATOR_DIV: {
172  workViewType work(Kokkos::view_alloc("Basis_HDIV_TET_In_FEM::getValues::work", vcprop), cardinality*(2*spaceDim+1), inputPoints.extent(0));
173  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
174  OPERATOR_DIV,numPtsPerEval> FunctorType;
175  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
176  break;
177  }
178  default: {
179  INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
180  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented" );
181  }
182  }
183 }
184 }
185 
186 // -------------------------------------------------------------------------------------
187 template<typename SpT, typename OT, typename PT>
189 Basis_HDIV_TET_In_FEM( const ordinal_type order,
190  const EPointType pointType ) {
191 
192  constexpr ordinal_type spaceDim = 3;
193  this->basisCardinality_ = CardinalityHDivTet(order);
194  this->basisDegree_ = order; // small n
195  this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Tetrahedron<4> >() );
196  this->basisType_ = BASIS_FEM_FIAT;
197  this->basisCoordinates_ = COORDINATES_CARTESIAN;
198 
199  const ordinal_type card = this->basisCardinality_;
200 
201  const ordinal_type cardPn = Intrepid2::getPnCardinality<spaceDim>(order); // dim of (P_{n}) -- smaller space
202  const ordinal_type cardPnm1 = Intrepid2::getPnCardinality<spaceDim>(order-1); // dim of (P_{n-1}) -- smaller space
203  const ordinal_type cardPnm2 = Intrepid2::getPnCardinality<spaceDim>(order-2); // dim of (P_{n-2}) -- smaller space
204  const ordinal_type cardVecPn = spaceDim*cardPn; // dim of (P_{n})^3 -- larger space
205  const ordinal_type cardVecPnm1 = spaceDim*cardPnm1; // dim of (P_{n-1})^3 -- smaller space
206  const ordinal_type dim_PkH = cardPnm1 - cardPnm2;
207 
208 
209  // Basis-dependent initializations
210  constexpr ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
211  constexpr ordinal_type maxCard = CardinalityHDivTet(Parameters::MaxOrder);
212  ordinal_type tags[maxCard][tagSize];
213 
214  // points are computed in the host and will be copied
215  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
216  dofCoords("Hdiv::Tet::In::dofCoords", card, spaceDim);
217 
218  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
219  dofCoeffs("Hdiv::Tet::In::dofCoeffs", card, spaceDim);
220 
221  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
222  coeffs("Hdiv::Tet::In::coeffs", cardVecPn, card);
223 
224  // first, need to project the basis for RT space onto the
225  // orthogonal basis of degree n
226  // get coefficients of PkHx
227 
228  const ordinal_type lwork = card*card;
229  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
230  V1("Hdiv::Tet::In::V1", cardVecPn, card);
231 
232  // basis for the space is
233  // { (phi_i,0,0) }_{i=0}^{cardPnm1-1} ,
234  // { (0,phi_i,0) }_{i=0}^{cardPnm1-1} ,
235  // { (0,0,phi_i) }_{i=0}^{cardPnm1-1} ,
236  // { (x,y) . phi_i}_{i=cardPnm2}^{cardPnm1-1}
237  // columns of V1 are expansion of this basis in terms of the orthogonal basis
238  // for P_{n}^3
239 
240  // these two loops get the first two sets of basis functions
241  for (ordinal_type i=0;i<cardPnm1;i++) {
242  for (ordinal_type k=0; k<3;k++) {
243  V1(k*cardPn+i,k*cardPnm1+i) = 1.0;
244  }
245  }
246 
247  // now I need to integrate { (x,y,z) phi } against the big basis
248  // first, get a cubature rule.
250  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> cubPoints("Hdiv::Tet::In::cubPoints", myCub.getNumPoints() , spaceDim );
251  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> cubWeights("Hdiv::Tet::In::cubWeights", myCub.getNumPoints() );
252  myCub.getCubature( cubPoints , cubWeights );
253 
254  // tabulate the scalar orthonormal basis at cubature points
255  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> phisAtCubPoints("Hdiv::Tet::In::phisAtCubPoints", cardPn , myCub.getNumPoints() );
256  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(phisAtCubPoints, cubPoints, order, OPERATOR_VALUE);
257 
258  // now do the integration
259  for (ordinal_type i=0;i<dim_PkH;i++) {
260  for (ordinal_type j=0;j<cardPn;j++) { // int (x,y,z) phi_i \cdot (phi_j,0,0)
261  V1(j,cardVecPnm1+i) = 0.0;
262  for (ordinal_type d=0; d< spaceDim; ++d)
263  for (ordinal_type k=0;k<myCub.getNumPoints();k++) {
264  V1(j+d*cardPn,cardVecPnm1+i) +=
265  cubWeights(k) * cubPoints(k,d)
266  * phisAtCubPoints(cardPnm2+i,k)
267  * phisAtCubPoints(j,k);
268  }
269  }
270  }
271 
272  // next, apply the RT nodes (rows) to the basis for (P_n)^3 (columns)
273  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
274  V2("Hdiv::Tet::In::V2", card ,cardVecPn);
275 
276  const ordinal_type numFaces = this->basisCellTopology_.getFaceCount();
277 
278  shards::CellTopology faceTop(shards::getCellTopologyData<shards::Triangle<3> >() );
279 
280  const int numPtsPerFace = PointTools::getLatticeSize( faceTop ,
281  order+2 ,
282  1 );
283 
284  // get the points on the tetrahedron face
285  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> triPts("Hdiv::Tet::In::triPts", numPtsPerFace , 2 );
286 
287  // construct lattice
288  const ordinal_type offset = 1;
289  PointTools::getLattice( triPts,
290  faceTop,
291  order+2,
292  offset,
293  pointType );
294 
295  // holds the image of the tet points
296  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> facePts("Hdiv::Tet::In::facePts", numPtsPerFace , spaceDim );
297  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> phisAtFacePoints("Hdiv::Tet::In::phisAtFacePoints", cardPn , numPtsPerFace );
298  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> faceNormal("Hcurl::Tet::In::faceNormal", spaceDim );
299 
300  // loop over faces
301  for (ordinal_type face=0;face<numFaces;face++) { // loop over faces
302 
303  // these are normal scaled by the appropriate face areas.
305  face ,
306  this->basisCellTopology_ );
307 
308  // multiply to account for reference face areas, so that magnitude of faceNormal is equal to the face measure
309  const scalarType refTriangleMeasure = 0.5;
310  for (ordinal_type j=0;j<spaceDim;j++)
311  faceNormal(j) *= refTriangleMeasure;
312 
313 
315  triPts ,
316  2 ,
317  face ,
318  this->basisCellTopology_ );
319 
320  // get phi values at face points
321  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(phisAtFacePoints, facePts, order, OPERATOR_VALUE);
322 
323  // loop over points (rows of V2)
324  for (ordinal_type j=0;j<numPtsPerFace;j++) {
325 
326  const ordinal_type i_card = numPtsPerFace*face+j;
327 
328  // loop over orthonormal basis functions (columns of V2)
329  for (ordinal_type k=0;k<cardPn;k++) {
330  // loop over space dimension
331  for (ordinal_type l=0; l<spaceDim; l++)
332  V2(i_card,k+l*cardPn) = faceNormal(l) * phisAtFacePoints(k,j);
333  }
334 
335  //save dof coordinates and coefficients
336  for(ordinal_type l=0; l<spaceDim; ++l) {
337  dofCoords(i_card,l) = facePts(j,l);
338  dofCoeffs(i_card,l) = faceNormal(l);
339  }
340 
341  tags[i_card][0] = 2; // face dof
342  tags[i_card][1] = face; // face id
343  tags[i_card][2] = j; // local dof id
344  tags[i_card][3] = numPtsPerFace; // total vert dof
345 
346  }
347  }
348 
349  // remaining nodes point values of each vector component on interior
350  // points of a lattice of degree+2
351  // This way, RT0 --> degree = 1 and internal lattice has no points
352  // RT1 --> degree = 2, and internal lattice has one point (inside of quartic)
353  const ordinal_type numPtsPerCell = PointTools::getLatticeSize( this->basisCellTopology_ ,
354  order + 2 ,
355  1 );
356 
357  if (numPtsPerCell > 0) {
358  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
359  internalPoints( "Hdiv::Tet::In::internalPoints", numPtsPerCell , spaceDim );
360  PointTools::getLattice( internalPoints ,
361  this->basisCellTopology_ ,
362  order + 2 ,
363  1 ,
364  pointType );
365 
366  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
367  phisAtInternalPoints("Hdiv::Tet::In::phisAtInternalPoints", cardPn , numPtsPerCell );
368  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>( phisAtInternalPoints , internalPoints , order, OPERATOR_VALUE );
369 
370  // copy values into right positions of V2
371  for (ordinal_type j=0;j<numPtsPerCell;j++) {
372 
373  const ordinal_type i_card = numFaces*numPtsPerFace+spaceDim*j;
374 
375  for (ordinal_type k=0;k<cardPn;k++) {
376  for (ordinal_type l=0;l<spaceDim;l++) {
377  V2(i_card+l,l*cardPn+k) = phisAtInternalPoints(k,j);
378  }
379  }
380 
381  //save dof coordinates and coefficients
382  for(ordinal_type d=0; d<spaceDim; ++d) {
383  for(ordinal_type l=0; l<spaceDim; ++l) {
384  dofCoords(i_card+d,l) = internalPoints(j,l);
385  dofCoeffs(i_card+d,l) = (l==d);
386  }
387 
388  tags[i_card+d][0] = spaceDim; // elem dof
389  tags[i_card+d][1] = 0; // elem id
390  tags[i_card+d][2] = spaceDim*j+d; // local dof id
391  tags[i_card+d][3] = spaceDim*numPtsPerCell; // total vert dof
392  }
393  }
394  }
395 
396  // form Vandermonde matrix. Actually, this is the transpose of the VDM,
397  // so we transpose on copy below.
398  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace>
399  vmat("Hdiv::Tet::In::vmat", card, card),
400  work("Hdiv::Tet::In::work", lwork),
401  ipiv("Hdiv::Tet::In::ipiv", card);
402 
403  //vmat' = V2*V1;
404  for(ordinal_type i=0; i< card; ++i) {
405  for(ordinal_type j=0; j< card; ++j) {
406  scalarType s=0;
407  for(ordinal_type k=0; k< cardVecPn; ++k)
408  s += V2(i,k)*V1(k,j);
409  vmat(i,j) = s;
410  }
411  }
412 
413  ordinal_type info = 0;
414  Teuchos::LAPACK<ordinal_type,scalarType> lapack;
415 
416  lapack.GETRF(card, card,
417  vmat.data(), vmat.stride_1(),
418  (ordinal_type*)ipiv.data(),
419  &info);
420 
421  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
422  std::runtime_error ,
423  ">>> ERROR: (Intrepid2::Basis_HDIV_TET_In_FEM) lapack.GETRF returns nonzero info." );
424 
425  lapack.GETRI(card,
426  vmat.data(), vmat.stride_1(),
427  (ordinal_type*)ipiv.data(),
428  work.data(), lwork,
429  &info);
430 
431  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
432  std::runtime_error ,
433  ">>> ERROR: (Intrepid2::Basis_HDIV_TET_In_FEM) lapack.GETRI returns nonzero info." );
434 
435  for (ordinal_type i=0;i<cardVecPn;++i)
436  for (ordinal_type j=0;j<card;++j){
437  scalarType s=0;
438  for(ordinal_type k=0; k< card; ++k)
439  s += V1(i,k)*vmat(k,j);
440  coeffs(i,j) = s;
441  }
442 
443  this->coeffs_ = Kokkos::create_mirror_view(typename SpT::memory_space(), coeffs);
444  Kokkos::deep_copy(this->coeffs_ , coeffs);
445 
446  this->dofCoords_ = Kokkos::create_mirror_view(typename SpT::memory_space(), dofCoords);
447  Kokkos::deep_copy(this->dofCoords_, dofCoords);
448 
449  this->dofCoeffs_ = Kokkos::create_mirror_view(typename SpT::memory_space(), dofCoeffs);
450  Kokkos::deep_copy(this->dofCoeffs_, dofCoeffs);
451 
452 
453  // set tags
454  {
455  // Basis-dependent initializations
456  const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
457  const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
458  const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
459 
460  ordinal_type_array_1d_host tagView(&tags[0][0], card*tagSize);
461 
462  // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
463  // tags are constructed on host
464  this->setOrdinalTagData(this->tagToOrdinal_,
465  this->ordinalToTag_,
466  tagView,
467  this->basisCardinality_,
468  tagSize,
469  posScDim,
470  posScOrd,
471  posDfOrd);
472  }
473 }
474 } // namespace Intrepid2
475 #endif
static void getReferenceSideNormal(Kokkos::DynRankView< refSideNormalValueType, refSideNormalProperties...> refSideNormal, const ordinal_type sideOrd, const shards::CellTopology parentCell)
Computes constant normal vectors to sides of 2D or 3D reference cells.
static void getLattice(Kokkos::DynRankView< pointValueType, pointProperties...> points, const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0, const EPointType pointType=POINTTYPE_EQUISPACED)
Computes a lattice of points of a given order on a reference simplex (currently disabled for other ce...
static void mapToReferenceSubcell(Kokkos::DynRankView< refSubcellPointValueType, refSubcellPointProperties...> refSubcellPoints, const Kokkos::DynRankView< paramPointValueType, paramPointProperties...> paramPoints, const ordinal_type subcellDim, const ordinal_type subcellOrd, const shards::CellTopology parentCell)
Computes parameterization maps of 1- and 2-subcells of reference cells.
Kokkos::View< ordinal_type *,typename ExecSpaceType::array_layout, Kokkos::HostSpace > ordinal_type_array_1d_host
View type for 1d host array.
Header file for the Intrepid2::CubatureDirectTetDefault class.
virtual void getCubature(pointViewType cubPoints, weightViewType cubWeights) const
Returns cubature points and weights (return arrays must be pre-sized/pre-allocated).
Basis_HDIV_TET_In_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.
Defines direct integration rules on a tetrahedron.
Header file for the Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH class.
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.
virtual ordinal_type getNumPoints() const
Returns the number of cubature points.
static ordinal_type getLatticeSize(const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0)
Computes the number of points in a lattice of a given order on a simplex (currently disabled for othe...