49 #ifndef __INTREPID2_HGRAD_TET_CN_FEM_ORTH_DEF_HPP__
50 #define __INTREPID2_HGRAD_TET_CN_FEM_ORTH_DEF_HPP__
57 template<
typename OutputViewType,
58 typename inputViewType,
59 typename workViewType,
61 KOKKOS_INLINE_FUNCTION
62 void OrthPolynomialTet<OutputViewType,inputViewType,workViewType,hasDeriv,0>::generate(
63 OutputViewType output,
64 const inputViewType input,
66 const ordinal_type order ) {
68 constexpr ordinal_type spaceDim = 3;
71 typedef typename OutputViewType::value_type value_type;
73 auto output0 = (hasDeriv) ? Kokkos::subview(output, Kokkos::ALL(), Kokkos::ALL(),0) : Kokkos::subview(output, Kokkos::ALL(), Kokkos::ALL());
76 npts = input.extent(0);
86 const ordinal_type loc = Intrepid2::getPnEnumeration<spaceDim>(0,0,0);
87 for (ordinal_type i=0;i<npts;++i) {
88 output0(loc, i) = 1.0;
90 output.access(loc,i,1) = 0;
91 output.access(loc,i,2) = 0;
92 output.access(loc,i,3) = 0;
98 value_type f1[maxNumPts]={},f2[maxNumPts]={}, f3[maxNumPts]={}, f4[maxNumPts]={},f5[maxNumPts]={},
99 df2_1[maxNumPts]={}, df2_2[maxNumPts]={}, df5_2[maxNumPts]={};
100 value_type df1_0, df1_1, df1_2, df3_1, df3_2, df4_2;
102 for (
int i=0;i<npts;i++) {
103 f1[i] = 2.0*z(i,0) + z(i,1) + z(i,2)- 1.0;
104 f2[i] = pow(z(i,1) + z(i,2) -1.0, 2);
105 f3[i] = 2.0*z(i,1) + z(i,2) -1.0;
106 f4[i] = 1.0 - z(i,2);
107 f5[i] = f4[i] * f4[i];
109 df2_1[i] = 2*(z(i,1) + z(i,2) -1.0);
124 const ordinal_type loc = Intrepid2::getPnEnumeration<spaceDim>(1,0,0);
125 for (ordinal_type i=0;i<npts;++i) {
126 output0(loc, i) = f1[i];
128 output.access(loc,i,1) = df1_0;
129 output.access(loc,i,2) = df1_1;
130 output.access(loc,i,3) = df1_2;
137 for (ordinal_type p=1;p<order;p++) {
139 loc = Intrepid2::getPnEnumeration<spaceDim>(p,0,0),
140 loc_p1 = Intrepid2::getPnEnumeration<spaceDim>(p+1,0,0),
141 loc_m1 = Intrepid2::getPnEnumeration<spaceDim>(p-1,0,0);
144 a = (2.0*p+1.0)/(1.0+p),
147 for (ordinal_type i=0;i<npts;++i) {
148 output0(loc_p1,i) = ( a * f1[i] * output0(loc,i) -
149 b * f2[i] * output0(loc_m1,i) );
151 output.access(loc_p1,i,1) = a * (f1[i] * output.access(loc,i,1) + df1_0 * output0(loc,i)) -
152 b * f2[i] * output.access(loc_m1,i,1) ;
153 output.access(loc_p1,i,2) = a * (f1[i] * output.access(loc,i,2) + df1_1 * output0(loc,i)) -
154 b * (df2_1[i] * output0(loc_m1,i) + f2[i] * output.access(loc_m1,i,2)) ;
155 output.access(loc_p1,i,3) = a * (f1[i] * output.access(loc,i,3) + df1_2 * output0(loc,i)) -
156 b * (df2_2[i] * output0(loc_m1,i) + f2[i] * output.access(loc_m1,i,3)) ;
162 for (ordinal_type p=0;p<order;++p) {
164 loc_p_0 = Intrepid2::getPnEnumeration<spaceDim>(p,0,0),
165 loc_p_1 = Intrepid2::getPnEnumeration<spaceDim>(p,1,0);
167 for (ordinal_type i=0;i<npts;++i) {
168 const value_type coeff = (2.0 * p + 3.0) * z(i,1) + z(i,2)-1.0;
169 output0(loc_p_1,i) = output0(loc_p_0,i)*coeff;
171 output.access(loc_p_1,i,1) = output.access(loc_p_0,i,1)*coeff;
172 output.access(loc_p_1,i,2) = output.access(loc_p_0,i,2)*coeff + output0(loc_p_0,i)*(2.0 * p + 3.0);
173 output.access(loc_p_1,i,3) = output.access(loc_p_0,i,3)*coeff + output0(loc_p_0,i);
181 for (ordinal_type p=0;p<order-1;++p)
182 for (ordinal_type q=1;q<order-p;++q) {
184 loc_p_qp1 = Intrepid2::getPnEnumeration<spaceDim>(p,q+1,0),
185 loc_p_q = Intrepid2::getPnEnumeration<spaceDim>(p,q,0),
186 loc_p_qm1 = Intrepid2::getPnEnumeration<spaceDim>(p,q-1,0);
188 value_type a,b,c, coeff, dcoeff_1, dcoeff_2;
189 Intrepid2::getJacobyRecurrenceCoeffs(a,b,c, 2*p+1,0,q);
190 for (ordinal_type i=0;i<npts;++i) {
191 coeff = a * f3[i] + b * f4[i];
192 dcoeff_1 = a * df3_1;
193 dcoeff_2 = a * df3_2 + b * df4_2;
194 output0(loc_p_qp1,i) = coeff * output0(loc_p_q,i)
195 - c* f5[i] * output0(loc_p_qm1,i) ;
197 output.access(loc_p_qp1,i,1) = coeff * output.access(loc_p_q,i,1) +
198 - c * f5[i] * output.access(loc_p_qm1,i,1) ;
199 output.access(loc_p_qp1,i,2) = coeff * output.access(loc_p_q,i,2) + dcoeff_1 * output0(loc_p_q,i)
200 - c * f5[i] * output.access(loc_p_qm1,i,2) ;
201 output.access(loc_p_qp1,i,3) = coeff * output.access(loc_p_q,i,3) + dcoeff_2 * output0(loc_p_q,i)
202 - c * f5[i] * output.access(loc_p_qm1,i,3) - c * df5_2[i] * output0(loc_p_qm1,i);
209 for (ordinal_type p=0;p<order;++p)
210 for (ordinal_type q=0;q<order-p;++q) {
213 loc_p_q_0 = Intrepid2::getPnEnumeration<spaceDim>(p,q,0),
214 loc_p_q_1 = Intrepid2::getPnEnumeration<spaceDim>(p,q,1);
216 for (ordinal_type i=0;i<npts;++i) {
217 const value_type coeff = 2.0 * ( 2.0 + q + p ) * z(i,2) - 1.0;
218 output0(loc_p_q_1,i) = output0(loc_p_q_0,i) * coeff;
220 output.access(loc_p_q_1,i,1) = output.access(loc_p_q_0,i,1) * coeff;
221 output.access(loc_p_q_1,i,2) = output.access(loc_p_q_0,i,2) * coeff;
222 output.access(loc_p_q_1,i,3) = output.access(loc_p_q_0,i,3) * coeff + 2.0 * ( 2.0 + q + p ) * output0(loc_p_q_0,i);
229 for (ordinal_type p=0;p<order-1;++p)
230 for (ordinal_type q=0;q<order-p-1;++q)
231 for (ordinal_type r=1;r<order-p-q;++r) {
233 loc_p_q_rp1 = Intrepid2::getPnEnumeration<spaceDim>(p,q,r+1),
234 loc_p_q_r = Intrepid2::getPnEnumeration<spaceDim>(p,q,r),
235 loc_p_q_rm1 = Intrepid2::getPnEnumeration<spaceDim>(p,q,r-1);
237 value_type a,b,c, coeff;
238 Intrepid2::getJacobyRecurrenceCoeffs(a,b,c, 2*p+2*q+2,0,r);
239 for (ordinal_type i=0;i<npts;++i) {
240 coeff = 2.0 * a * z(i,2) - a + b;
241 output0(loc_p_q_rp1,i) = coeff * output0(loc_p_q_r,i) - c * output0(loc_p_q_rm1,i) ;
243 output.access(loc_p_q_rp1,i,1) = coeff * output.access(loc_p_q_r,i,1) - c * output.access(loc_p_q_rm1,i,1);
244 output.access(loc_p_q_rp1,i,2) = coeff * output.access(loc_p_q_r,i,2) - c * output.access(loc_p_q_rm1,i,2);
245 output.access(loc_p_q_rp1,i,3) = coeff * output.access(loc_p_q_r,i,3) + 2 * a * output0(loc_p_q_r,i) - c * output.access(loc_p_q_rm1,i,3);
253 for (ordinal_type p=0;p<=order;++p)
254 for (ordinal_type q=0;q<=order-p;++q)
255 for (ordinal_type r=0;r<=order-p-q;++r) {
256 ordinal_type loc_p_q_r = Intrepid2::getPnEnumeration<spaceDim>(p,q,r);
257 value_type scal = std::sqrt( (p+0.5)*(p+q+1.0)*(p+q+r+1.5) );
258 for (ordinal_type i=0;i<npts;++i) {
259 output0(loc_p_q_r,i) *= scal;
261 output.access(loc_p_q_r,i,1) *= scal;
262 output.access(loc_p_q_r,i,2) *= scal;
263 output.access(loc_p_q_r,i,3) *= scal;
269 template<
typename OutputViewType,
270 typename inputViewType,
271 typename workViewType,
273 KOKKOS_INLINE_FUNCTION
274 void OrthPolynomialTet<OutputViewType,inputViewType,workViewType,hasDeriv,1>::generate(
275 OutputViewType output,
276 const inputViewType input,
278 const ordinal_type order ) {
279 constexpr ordinal_type spaceDim = 3;
281 npts = input.extent(0),
282 card = output.extent(0);
284 workViewType dummyView;
285 OrthPolynomialTet<workViewType,inputViewType,workViewType,hasDeriv,0>::generate(work, input, dummyView, order);
286 for (ordinal_type i=0;i<card;++i)
287 for (ordinal_type j=0;j<npts;++j)
288 for (ordinal_type k=0;k<spaceDim;++k)
289 output.access(i,j,k) = work(i,j,k+1);
294 template<
typename OutputViewType,
295 typename inputViewType,
296 typename workViewType,
299 KOKKOS_INLINE_FUNCTION
300 void OrthPolynomialTet<OutputViewType,inputViewType,workViewType,hasDeriv,n>::generate(
302 const inputViewType ,
304 const ordinal_type ) {
305 #if 0 //#ifdef HAVE_INTREPID2_SACADO
307 constexpr ordinal_type spaceDim = 3;
308 constexpr ordinal_type maxCard = Intrepid2::getPnCardinality<spaceDim, Parameters::MaxOrder>();
310 typedef typename OutputViewType::value_type value_type;
311 typedef Sacado::Fad::SFad<value_type,spaceDim> fad_type;
314 npts = input.extent(0),
315 card = output.extent(0);
321 typedef typename inputViewType::memory_space memory_space;
322 typedef typename inputViewType::memory_space memory_space;
323 typedef typename Kokkos::View<fad_type***, memory_space> outViewType;
324 typedef typename Kokkos::View<fad_type**, memory_space> inViewType;
325 auto vcprop = Kokkos::common_view_alloc_prop(input);
327 inViewType in(Kokkos::view_wrap((value_type*)&inBuf[0][0], vcprop), npts, spaceDim);
328 outViewType out(Kokkos::view_wrap((value_type*)&outBuf[0][0][0], vcprop), card, npts, n*(n+1)/2);
330 for (ordinal_type i=0;i<npts;++i)
331 for (ordinal_type j=0;j<spaceDim;++j) {
332 in(i,j) = input(i,j);
333 in(i,j).diff(j,spaceDim);
336 typedef typename Kokkos::DynRankView<fad_type, memory_space> outViewType_;
337 outViewType_ workView;
341 auto vcprop = Kokkos::common_view_alloc_prop(in);
342 workView = outViewType_( Kokkos::view_wrap((value_type*)&outBuf[0][0][0], vcprop), card, npts, spaceDim+1);
344 OrthPolynomialTet<outViewType,inViewType,outViewType_,hasDeriv,n-1>::generate(out, in, workView, order);
346 for (ordinal_type i=0;i<card;++i)
347 for (ordinal_type j=0;j<npts;++j) {
348 for (ordinal_type i_dx = 0; i_dx <= n; ++i_dx)
349 for (ordinal_type i_dy = 0; i_dy <= n-i_dx; ++i_dy) {
350 ordinal_type i_dz = n - i_dx - i_dy;
351 ordinal_type i_Dn = Intrepid2::getDkEnumeration<spaceDim>(i_dx,i_dy,i_dz);
355 ordinal_type i_Dnm1 = Intrepid2::getDkEnumeration<spaceDim>(i_dx-1, i_dy, i_dz);
356 output.access(i,j,i_Dn) = out(i,j,i_Dnm1).dx(0);
361 ordinal_type i_Dnm1 = Intrepid2::getDkEnumeration<spaceDim>(i_dx, i_dy-1, i_dz);
362 output.access(i,j,i_Dn) = out(i,j,i_Dnm1).dx(1);
367 ordinal_type i_Dnm1 = Intrepid2::getDkEnumeration<spaceDim>(i_dx, i_dy, i_dz-1);
368 output.access(i,j,i_Dn) = out(i,j,i_Dnm1).dx(2);
373 INTREPID2_TEST_FOR_ABORT(
true,
374 ">>> ERROR: (Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH::OrthPolynomialTri) Computing of second and higher-order derivatives is not currently supported");
379 template<EOperator opType>
380 template<
typename OutputViewType,
381 typename inputViewType,
382 typename workViewType>
383 KOKKOS_INLINE_FUNCTION
385 Basis_HGRAD_TET_Cn_FEM_ORTH::Serial<opType>::
386 getValues( OutputViewType output,
387 const inputViewType input,
389 const ordinal_type order) {
391 case OPERATOR_VALUE: {
392 OrthPolynomialTet<OutputViewType,inputViewType,workViewType,false,0>::generate( output, input, work, order );
397 OrthPolynomialTet<OutputViewType,inputViewType,workViewType,true,1>::generate( output, input, work, order );
401 OrthPolynomialTet<OutputViewType,inputViewType,workViewType,true,2>::generate( output, input, work, order );
405 INTREPID2_TEST_FOR_ABORT(
true,
406 ">>> ERROR: (Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH::Serial::getValues) operator is not supported");
413 template<
typename SpT, ordinal_type numPtsPerEval,
414 typename outputValueValueType,
class ...outputValueProperties,
415 typename inputPointValueType,
class ...inputPointProperties>
417 Basis_HGRAD_TET_Cn_FEM_ORTH::
418 getValues( Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
419 const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
420 const ordinal_type order,
421 const EOperator operatorType ) {
422 typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
423 typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
424 typedef typename ExecSpace<typename inputPointViewType::execution_space,SpT>::ExecSpaceType ExecSpaceType;
427 const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
428 const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
429 const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
430 Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
432 typedef typename inputPointViewType::value_type inputPointType;
433 const ordinal_type cardinality = outputValues.extent(0);
434 const ordinal_type spaceDim = 3;
436 auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
437 typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
439 switch (operatorType) {
440 case OPERATOR_VALUE: {
441 workViewType dummyWorkView;
442 typedef Functor<outputValueViewType,inputPointViewType,workViewType,OPERATOR_VALUE,numPtsPerEval> FunctorType;
443 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, dummyWorkView, order) );
448 workViewType work(Kokkos::view_alloc(
"Basis_HGRAD_TET_In_FEM_ORTH::getValues::work", vcprop), cardinality, inputPoints.extent(0), spaceDim+1);
449 typedef Functor<outputValueViewType,inputPointViewType,workViewType,OPERATOR_D1,numPtsPerEval> FunctorType;
450 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, work, order) );
454 workViewType dummyWorkView;
455 typedef Functor<outputValueViewType,inputPointViewType,workViewType,OPERATOR_D2,numPtsPerEval> FunctorType;
456 Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints ,dummyWorkView, order) );
460 INTREPID2_TEST_FOR_EXCEPTION( !Intrepid2::isValidOperator(operatorType), std::invalid_argument,
461 ">>> ERROR (Basis_HGRAD_TET_Cn_FEM_ORTH): invalid operator type");
469 template<
typename SpT,
typename OT,
typename PT>
473 constexpr ordinal_type spaceDim = 3;
474 this->basisCardinality_ = Intrepid2::getPnCardinality<spaceDim>(order);
475 this->basisDegree_ = order;
476 this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Tetrahedron<4> >() );
477 this->basisType_ = BASIS_FEM_HIERARCHICAL;
478 this->basisCoordinates_ = COORDINATES_CARTESIAN;
479 this->functionSpace_ = FUNCTION_SPACE_HGRAD;
484 constexpr ordinal_type tagSize = 4;
485 const ordinal_type posScDim = 0;
486 const ordinal_type posScOrd = 1;
487 const ordinal_type posDfOrd = 2;
489 constexpr ordinal_type maxCard = Intrepid2::getPnCardinality<spaceDim, Parameters::MaxOrder>();
490 ordinal_type tags[maxCard][tagSize];
491 const ordinal_type card = this->basisCardinality_;
492 for (ordinal_type i=0;i<card;++i) {
503 this->setOrdinalTagData(this->tagToOrdinal_,
506 this->basisCardinality_,
Kokkos::View< ordinal_type *, typename ExecSpaceType::array_layout, Kokkos::HostSpace > OrdinalTypeArray1DHost
View type for 1d host array.
Basis_HGRAD_TET_Cn_FEM_ORTH(const ordinal_type order)
Constructor.
static constexpr ordinal_type MaxNumPtsPerBasisEval
The maximum number of points to eval in serial mode.