Intrepid2
Intrepid2_HCURL_TET_In_FEMDef.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid2 Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
38 // Mauro Perego (mperego@sandia.gov)
39 //
40 // ************************************************************************
41 // @HEADER
42 
49 #ifndef __INTREPID2_HCURL_TET_IN_FEM_DEF_HPP__
50 #define __INTREPID2_HCURL_TET_IN_FEM_DEF_HPP__
51 
54 #include "Teuchos_SerialDenseMatrix.hpp"
55 
56 namespace Intrepid2 {
57 
58 // -------------------------------------------------------------------------------------
59 
60 namespace Impl {
61 
62 template<EOperator opType>
63 template<typename OutputViewType,
64 typename inputViewType,
65 typename workViewType,
66 typename vinvViewType>
67 KOKKOS_INLINE_FUNCTION
68 void
69 Basis_HCURL_TET_In_FEM::Serial<opType>::
70 getValues( OutputViewType output,
71  const inputViewType input,
72  workViewType work,
73  const vinvViewType coeffs ) {
74 
75  constexpr ordinal_type spaceDim = 3;
76  const ordinal_type
77  cardPn = coeffs.extent(0)/spaceDim,
78  card = coeffs.extent(1),
79  npts = input.extent(0);
80 
81  // compute order
82  ordinal_type order = 0;
83  for (ordinal_type p=0;p<=Parameters::MaxOrder;++p) {
84  if (card == CardinalityHCurlTet(p)) {
85  order = p;
86  break;
87  }
88  }
89 
90  typedef typename Kokkos::DynRankView<typename workViewType::value_type, typename workViewType::memory_space> viewType;
91  auto vcprop = Kokkos::common_view_alloc_prop(work);
92  auto ptr = work.data();
93 
94  switch (opType) {
95  case OPERATOR_VALUE: {
96  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts);
97  workViewType dummyView;
98 
99  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
100  Serial<opType>::getValues(phis, input, dummyView, order);
101 
102  for (ordinal_type i=0;i<card;++i)
103  for (ordinal_type j=0;j<npts;++j)
104  for (ordinal_type d=0;d<spaceDim;++d) {
105  output.access(i,j,d) = 0.0;
106  for (ordinal_type k=0;k<cardPn;++k)
107  output.access(i,j,d) += coeffs(k+d*cardPn,i) * phis(k,j);
108  }
109  break;
110  }
111  case OPERATOR_CURL: {
112  const viewType phis(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim);
113  ptr += card*npts*spaceDim*get_dimension_scalar(work);
114  const viewType workView(Kokkos::view_wrap(ptr, vcprop), card, npts, spaceDim+1);
115 
116  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::
117  Serial<OPERATOR_GRAD>::getValues(phis, input, workView, order);
118 
119  for (ordinal_type i=0;i<card;++i) {
120  for (ordinal_type j=0;j<npts;++j) {
121  for (ordinal_type d=0; d< spaceDim; ++d) {
122  output.access(i,j,d) = 0.0;
123  ordinal_type d1 = (d+1) % spaceDim, d2 = (d+2) % spaceDim;
124  for (ordinal_type k=0; k<cardPn; ++k) //\sum_k (coeffs_k, coeffs_{k+cardPn}, coeffs_{k+2 cardPn}) \times phis_kj (cross product)
125  output.access(i,j,d) += coeffs(k+d2*cardPn,i)*phis(k,j,d1)
126  -coeffs(k+d1*cardPn,i)*phis(k,j,d2);
127  }
128  }
129  }
130  break;
131  }
132  default: {
133  INTREPID2_TEST_FOR_ABORT( true,
134  ">>> ERROR (Basis_HCURL_TET_In_FEM): Operator type not implemented");
135  }
136  }
137 }
138 
139 template<typename SpT, ordinal_type numPtsPerEval,
140 typename outputValueValueType, class ...outputValueProperties,
141 typename inputPointValueType, class ...inputPointProperties,
142 typename vinvValueType, class ...vinvProperties>
143 void
144 Basis_HCURL_TET_In_FEM::
145 getValues( Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
146  const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
147  const Kokkos::DynRankView<vinvValueType, vinvProperties...> coeffs,
148  const EOperator operatorType) {
149  typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
150  typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
151  typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
152  typedef typename ExecSpace<typename inputPointViewType::execution_space,SpT>::ExecSpaceType ExecSpaceType;
153 
154  // loopSize corresponds to cardinality
155  const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
156  const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
157  const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
158  Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
159 
160  typedef typename inputPointViewType::value_type inputPointType;
161 
162  const ordinal_type cardinality = outputValues.extent(0);
163  const ordinal_type spaceDim = 3;
164 
165  auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
166  typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
167 
168  switch (operatorType) {
169  case OPERATOR_VALUE: {
170  workViewType work(Kokkos::view_alloc("Basis_HCURL_TET_In_FEM::getValues::work", vcprop), cardinality, inputPoints.extent(0));
171  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
172  OPERATOR_VALUE,numPtsPerEval> FunctorType;
173  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
174  break;
175  }
176  case OPERATOR_CURL: {
177  workViewType work(Kokkos::view_alloc("Basis_HCURL_TET_In_FEM::getValues::work", vcprop), cardinality*(2*spaceDim+1), inputPoints.extent(0));
178  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType, workViewType,
179  OPERATOR_CURL,numPtsPerEval> FunctorType;
180  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, coeffs, work) );
181  break;
182  }
183  default: {
184  INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
185  ">>> ERROR (Basis_HCURL_TET_In_FEM): Operator type not implemented" );
186  }
187  }
188 }
189 }
190 
191 // -------------------------------------------------------------------------------------
192 template<typename SpT, typename OT, typename PT>
194 Basis_HCURL_TET_In_FEM( const ordinal_type order,
195  const EPointType pointType ) {
196 
197  constexpr ordinal_type spaceDim = 3;
198  this->basisCardinality_ = CardinalityHCurlTet(order);
199  this->basisDegree_ = order; // small n
200  this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Tetrahedron<4> >() );
201  this->basisType_ = BASIS_FEM_FIAT;
202  this->basisCoordinates_ = COORDINATES_CARTESIAN;
203  this->functionSpace_ = FUNCTION_SPACE_HCURL;
204 
205  const ordinal_type card = this->basisCardinality_;
206 
207  const ordinal_type cardPn = Intrepid2::getPnCardinality<spaceDim>(order); // dim of (P_{n}) -- smaller space
208  const ordinal_type cardPnm1 = Intrepid2::getPnCardinality<spaceDim>(order-1); // dim of (P_{n-1}) -- smaller space
209  const ordinal_type cardPnm2 = Intrepid2::getPnCardinality<spaceDim>(order-2); // dim of (P_{n-2}) -- smaller space
210  const ordinal_type cardVecPn = spaceDim*cardPn; // dim of (P_{n})^2 -- larger space
211  const ordinal_type cardVecPnm1 = spaceDim*cardPnm1; // dim of (P_{n-1})^2 -- smaller space
212  const ordinal_type cardPnm1H = cardPnm1-cardPnm2; //Homogeneous polynomial of order (n-1)
213 
214 
215 
216  // Basis-dependent initializations
217  constexpr ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
218  constexpr ordinal_type maxCard = CardinalityHCurlTet(Parameters::MaxOrder);
219  ordinal_type tags[maxCard][tagSize];
220 
221  // points are computed in the host and will be copied
222  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
223  dofCoords("Hcurl::Tet::In::dofCoords", card, spaceDim);
224 
225  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
226  coeffs("Hcurl::Tet::In::coeffs", cardVecPn, card);
227 
228  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
229  dofCoeffs("Hcurl::Tet::In::dofCoeffs", card, spaceDim);
230 
231  // first, need to project the basis for RT space onto the
232  // orthogonal basis of degree n
233  // get coefficients of PkHx
234 
235  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace> //use LayoutLeft for Lapack
236  V1("Hcurl::Tet::In::V1", cardVecPn, cardVecPnm1 + spaceDim*cardPnm1H);
237 
238 
239  // these two loops get the first three sets of basis functions
240  for (ordinal_type i=0;i<cardPnm1;i++)
241  for (ordinal_type d=0;d<spaceDim;d++)
242  V1(i+d*cardPn,i+d*cardPnm1) = 1.0;
243 
244 
245  // now I need to integrate { (x,y) \times phi } against the big basis
246  // first, get a cubature rule.
248  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> cubPoints("Hcurl::Tet::In::cubPoints", myCub.getNumPoints() , spaceDim );
249  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> cubWeights("Hcurl::Tet::In::cubWeights", myCub.getNumPoints() );
250  myCub.getCubature( cubPoints , cubWeights );
251 
252  // tabulate the scalar orthonormal basis at cubature points
253  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> phisAtCubPoints("Hcurl::Tet::In::phisAtCubPoints", cardPn , myCub.getNumPoints() );
254  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(phisAtCubPoints, cubPoints, order, OPERATOR_VALUE);
255 
256  // Integrate (x psi_j, y psi_j, z psi_j) \times (phi_i, phi_{i+cardPn}, phi_{i+2 cardPn}) cross product. psi are homogeneous polynomials of order (n-1)
257  for (ordinal_type i=0;i<cardPn;i++) {
258  for (ordinal_type j=0;j<cardPnm1H;j++) { // loop over homogeneous polynomials
259  for (ordinal_type d=0; d< spaceDim; ++d) {
260  scalarType integral(0);
261  for (ordinal_type k=0;k<myCub.getNumPoints();k++)
262  integral += cubWeights(k) * cubPoints(k,d)
263  * phisAtCubPoints(cardPnm2+j,k)
264  * phisAtCubPoints(i,k);
265  ordinal_type d1 = (d+1) % spaceDim, d2 = (d+2) % spaceDim;
266  V1(i+d2*cardPn,cardVecPnm1+d1*cardPnm1H + j) = -integral;
267  V1(i+d1*cardPn,cardVecPnm1+d2*cardPnm1H + j) = integral;
268  }
269  }
270  }
271 
272 
273 
274 
275 
276  // now I need to set up an SVD to get a basis for the space
277  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace>
278  S("Hcurl::Tet::In::S", cardVecPn,1),
279  U("Hcurl::Tet::In::U", cardVecPn, cardVecPn),
280  Vt("Hcurl::Tet::In::Vt", cardVecPn, cardVecPn),
281  work("Hcurl::Tet::In::work", 5*cardVecPn,1),
282  rWork("Hcurl::Tet::In::rW", 1,1);
283 
284 
285 
286  ordinal_type info = 0;
287  Teuchos::LAPACK<ordinal_type,scalarType> lapack;
288 
289 
290  lapack.GESVD( 'A',
291  'N',
292  V1.extent(0) ,
293  V1.extent(1) ,
294  V1.data() ,
295  V1.stride_1() ,
296  S.data() ,
297  U.data() ,
298  U.stride_1() ,
299  Vt.data() ,
300  Vt.stride_1() ,
301  work.data() ,
302  5*cardVecPn ,
303  rWork.data() ,
304  &info );
305 
306 
307 #ifdef HAVE_INTREPID2_DEBUG
308  ordinal_type num_nonzero_sv = 0;
309  for (int i=0;i<cardVecPn;i++)
310  num_nonzero_sv += (S(i,0) > tolerence());
311 
312  INTREPID2_TEST_FOR_EXCEPTION( num_nonzero_sv != card, std::invalid_argument,
313  ">>> ERROR: (Intrepid2::Basis_HCURL_TET_In_FEM( order, pointType), Matrix V1 should have rank equal to the cardinality of HCURL space");
314 #endif
315 
316  // next, apply the RT nodes (rows) to the basis for (P_n)^2 (columns)
317  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
318  V2("Hcurl::Tet::In::V2", card ,cardVecPn);
319 
320  const ordinal_type numEdges = this->basisCellTopology_.getEdgeCount();
321  const ordinal_type numFaces = this->basisCellTopology_.getFaceCount();
322 
323  // first numEdges * degree nodes are normals at each edge
324  // get the points on the line
325 
326  shards::CellTopology edgeTop(shards::getCellTopologyData<shards::Line<2> >() );
327  shards::CellTopology faceTop(shards::getCellTopologyData<shards::Triangle<3> >() );
328 
329  const int numPtsPerEdge = PointTools::getLatticeSize( edgeTop ,
330  order+1 ,
331  1 );
332 
333  const int numPtsPerFace = PointTools::getLatticeSize( faceTop ,
334  order+1 ,
335  1 );
336 
337  const int numPtsPerCell = PointTools::getLatticeSize( this->basisCellTopology_ ,
338  order+1 ,
339  1 );
340 
341  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> linePts("Hcurl::Tet::In::linePts", numPtsPerEdge , 1 );
342  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> triPts("Hcurl::Tet::In::triPts", numPtsPerFace , 2 );
343 
344  // construct lattice
345  const ordinal_type offset = 1;
346 
347 
348 
349  PointTools::getLattice( linePts,
350  edgeTop,
351  order+1, offset,
352  pointType );
353 
354  PointTools::getLattice( triPts,
355  faceTop,
356  order+1, offset,
357  pointType );
358 
359  // holds the image of the line points
360  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> edgePts("Hcurl::Tet::In::edgePts", numPtsPerEdge , spaceDim );
361  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> facePts("Hcurl::Tet::In::facePts", numPtsPerFace , spaceDim );
362  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> phisAtEdgePoints("Hcurl::Tet::In::phisAtEdgePoints", cardPn , numPtsPerEdge );
363  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> phisAtFacePoints("Hcurl::Tet::In::phisAtFacePoints", cardPn , numPtsPerFace);
364 
365  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> edgeTan("Hcurl::Tet::In::edgeTan", spaceDim );
366 
367  // these are tangents scaled by the appropriate edge lengths.
368  for (ordinal_type i=0;i<numEdges;i++) { // loop over edges
370  i ,
371  this->basisCellTopology_ );
372  /* multiply by measure of reference edge so that magnitude of the edgeTan is equal to the edge measure */
373  const scalarType refEdgeMeasure = 2.0;
374  for (ordinal_type j=0;j<spaceDim;j++)
375  edgeTan(j) *= refEdgeMeasure;
376 
378  linePts ,
379  1 ,
380  i ,
381  this->basisCellTopology_ );
382 
383  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(phisAtEdgePoints , edgePts, order, OPERATOR_VALUE);
384 
385  // loop over points (rows of V2)
386  for (ordinal_type j=0;j<numPtsPerEdge;j++) {
387 
388  const ordinal_type i_card = numPtsPerEdge*i+j;
389 
390  // loop over orthonormal basis functions (columns of V2)
391  for (ordinal_type k=0;k<cardPn;k++)
392  for (ordinal_type d=0;d<spaceDim;d++)
393  V2(i_card,k+d*cardPn) = edgeTan(d) * phisAtEdgePoints(k,j);
394 
395  //save dof coordinates and coefficients
396  for(ordinal_type k=0; k<spaceDim; ++k) {
397  dofCoords(i_card,k) = edgePts(j,k);
398  dofCoeffs(i_card,k) = edgeTan(k);
399  }
400 
401  tags[i_card][0] = 1; // edge dof
402  tags[i_card][1] = i; // edge id
403  tags[i_card][2] = j; // local dof id
404  tags[i_card][3] = numPtsPerEdge; // total vert dof
405 
406  }
407  }
408 
409  if(numPtsPerFace >0) {//handle faces if needed (order >1)
410  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> faceTan1("Hcurl::Tet::In::edgeTan", spaceDim );
411  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace> faceTan2("Hcurl::Tet::In::edgeTan", spaceDim );
412 
413  for (ordinal_type i=0;i<numFaces;i++) { // loop over faces
415  faceTan2,
416  i ,
417  this->basisCellTopology_ );
418 
420  triPts ,
421  2 ,
422  i ,
423  this->basisCellTopology_ );
424 
425  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>(phisAtFacePoints , facePts, order, OPERATOR_VALUE);
426 
427  // loop over points (rows of V2)
428  for (ordinal_type j=0;j<numPtsPerFace;j++) {
429 
430  const ordinal_type i_card = numEdges*numPtsPerEdge+2*numPtsPerFace*i+2*j;
431  const ordinal_type i_card_p1 = i_card+1; // creating a temp otherwise nvcc gets confused
432 
433  // loop over orthonormal basis functions (columns of V2)
434  for (ordinal_type k=0;k<cardPn;k++)
435  for (ordinal_type d=0;d<spaceDim;d++) {
436  V2(i_card,k+d*cardPn) = faceTan1(d) * phisAtFacePoints(k,j);
437  V2(i_card_p1,k+d*cardPn) = faceTan2(d) * phisAtFacePoints(k,j);
438  }
439 
440  //save dof coordinates
441  for(ordinal_type k=0; k<spaceDim; ++k) {
442  dofCoords(i_card,k) = facePts(j,k);
443  dofCoords(i_card_p1,k) = facePts(j,k);
444  dofCoeffs(i_card,k) = faceTan1(k);
445  dofCoeffs(i_card_p1,k) = faceTan2(k);
446  }
447 
448  tags[i_card][0] = 2; // face dof
449  tags[i_card][1] = i; // face id
450  tags[i_card][2] = 2*j; // local face id
451  tags[i_card][3] = 2*numPtsPerFace; // total face dof
452 
453  tags[i_card_p1][0] = 2; // face dof
454  tags[i_card_p1][1] = i; // face id
455  tags[i_card_p1][2] = 2*j+1; // local face id
456  tags[i_card_p1][3] = 2*numPtsPerFace; // total face dof
457 
458  }
459  }
460  }
461 
462 
463  // internal dof, if needed
464  if (numPtsPerCell > 0) {
465  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
466  cellPoints( "Hcurl::Tet::In::cellPoints", numPtsPerCell , spaceDim );
467  PointTools::getLattice( cellPoints ,
468  this->basisCellTopology_ ,
469  order + 1 ,
470  1 ,
471  pointType );
472 
473  Kokkos::DynRankView<scalarType,typename SpT::array_layout,Kokkos::HostSpace>
474  phisAtCellPoints("Hcurl::Tet::In::phisAtCellPoints", cardPn , numPtsPerCell );
475  Impl::Basis_HGRAD_TET_Cn_FEM_ORTH::getValues<Kokkos::HostSpace::execution_space,Parameters::MaxNumPtsPerBasisEval>( phisAtCellPoints , cellPoints , order, OPERATOR_VALUE );
476 
477  // copy values into right positions of V2
478  for (ordinal_type j=0;j<numPtsPerCell;j++) {
479 
480  const ordinal_type i_card = numEdges*numPtsPerEdge+2*numFaces*numPtsPerFace+spaceDim*j;
481 
482  for (ordinal_type k=0;k<cardPn;k++)
483  for (ordinal_type d=0;d<spaceDim;d++)
484  V2(i_card+d,d*cardPn+k) = phisAtCellPoints(k,j);
485 
486 
487  //save dof coordinates
488  for(ordinal_type d=0; d<spaceDim; ++d) {
489  for(ordinal_type dim=0; dim<spaceDim; ++dim) {
490  dofCoords(i_card+d,dim) = cellPoints(j,dim);
491  dofCoeffs(i_card+d,dim) = (d==dim);
492  }
493 
494  tags[i_card+d][0] = spaceDim; // elem dof
495  tags[i_card+d][1] = 0; // elem id
496  tags[i_card+d][2] = spaceDim*j+d; // local dof id
497  tags[i_card+d][3] = spaceDim*numPtsPerCell; // total vert dof
498  }
499  }
500  }
501 
502  // form Vandermonde matrix. Actually, this is the transpose of the VDM,
503  // so we transpose on copy below.
504  const ordinal_type lwork = card*card;
505  Kokkos::DynRankView<scalarType,Kokkos::LayoutLeft,Kokkos::HostSpace>
506  vmat("Hcurl::Tet::In::vmat", card, card),
507  work1("Hcurl::Tet::In::work", lwork),
508  ipiv("Hcurl::Tet::In::ipiv", card);
509 
510  //vmat = V2*U;
511  for(ordinal_type i=0; i< card; ++i) {
512  for(ordinal_type j=0; j< card; ++j) {
513  scalarType s=0;
514  for(ordinal_type k=0; k< cardVecPn; ++k)
515  s += V2(i,k)*U(k,j);
516  vmat(i,j) = s;
517  }
518  }
519 
520  info = 0;
521 
522  lapack.GETRF(card, card,
523  vmat.data(), vmat.stride_1(),
524  (ordinal_type*)ipiv.data(),
525  &info);
526 
527  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
528  std::runtime_error ,
529  ">>> ERROR: (Intrepid2::Basis_HCURL_TET_In_FEM) lapack.GETRF returns nonzero info." );
530 
531  lapack.GETRI(card,
532  vmat.data(), vmat.stride_1(),
533  (ordinal_type*)ipiv.data(),
534  work1.data(), lwork,
535  &info);
536 
537  INTREPID2_TEST_FOR_EXCEPTION( info != 0,
538  std::runtime_error ,
539  ">>> ERROR: (Intrepid2::Basis_HCURL_TET_In_FEM) lapack.GETRI returns nonzero info." );
540 
541  for (ordinal_type i=0;i<cardVecPn;++i) {
542  for (ordinal_type j=0;j<card;++j){
543  scalarType s=0;
544  for(ordinal_type k=0; k< card; ++k)
545  s += U(i,k)*vmat(k,j);
546  coeffs(i,j) = s;
547  }
548  }
549 
550  this->coeffs_ = Kokkos::create_mirror_view(typename SpT::memory_space(), coeffs);
551  Kokkos::deep_copy(this->coeffs_ , coeffs);
552 
553  this->dofCoords_ = Kokkos::create_mirror_view(typename SpT::memory_space(), dofCoords);
554  Kokkos::deep_copy(this->dofCoords_, dofCoords);
555 
556  this->dofCoeffs_ = Kokkos::create_mirror_view(typename SpT::memory_space(), dofCoeffs);
557  Kokkos::deep_copy(this->dofCoeffs_, dofCoeffs);
558 
559 
560  // set tags
561  {
562  // Basis-dependent initializations
563  const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
564  const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
565  const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
566 
567  OrdinalTypeArray1DHost tagView(&tags[0][0], card*tagSize);
568 
569  // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
570  // tags are constructed on host
571  this->setOrdinalTagData(this->tagToOrdinal_,
572  this->ordinalToTag_,
573  tagView,
574  this->basisCardinality_,
575  tagSize,
576  posScDim,
577  posScOrd,
578  posDfOrd);
579  }
580 }
581 } // namespace Intrepid2
582 #endif
static void getReferenceEdgeTangent(Kokkos::DynRankView< refEdgeTangentValueType, refEdgeTangentProperties...> refEdgeTangent, const ordinal_type edgeOrd, const shards::CellTopology parentCell)
Computes constant tangent vectors to edges of 2D or 3D reference cells.
Kokkos::View< ordinal_type *, typename ExecSpaceType::array_layout, Kokkos::HostSpace > OrdinalTypeArray1DHost
View type for 1d host array.
static void getLattice(Kokkos::DynRankView< pointValueType, pointProperties...> points, const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0, const EPointType pointType=POINTTYPE_EQUISPACED)
Computes a lattice of points of a given order on a reference simplex (currently disabled for other ce...
static void mapToReferenceSubcell(Kokkos::DynRankView< refSubcellPointValueType, refSubcellPointProperties...> refSubcellPoints, const Kokkos::DynRankView< paramPointValueType, paramPointProperties...> paramPoints, const ordinal_type subcellDim, const ordinal_type subcellOrd, const shards::CellTopology parentCell)
Computes parameterization maps of 1- and 2-subcells of reference cells.
virtual void getCubature(PointViewType cubPoints, weightViewType cubWeights) const
Returns cubature points and weights (return arrays must be pre-sized/pre-allocated).
Basis_HCURL_TET_In_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.
Header file for the Intrepid2::CubatureDirectTetDefault class.
Defines direct integration rules on a tetrahedron.
static void getReferenceFaceTangents(Kokkos::DynRankView< refFaceTanUValueType, refFaceTanUProperties...> refFaceTanU, Kokkos::DynRankView< refFaceTanVValueType, refFaceTanVProperties...> refFaceTanV, const ordinal_type faceOrd, const shards::CellTopology parentCell)
Computes pairs of constant tangent vectors to faces of a 3D reference cells.
Header file for the Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH class.
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.
virtual ordinal_type getNumPoints() const
Returns the number of cubature points.
static ordinal_type getLatticeSize(const shards::CellTopology cellType, const ordinal_type order, const ordinal_type offset=0)
Computes the number of points in a lattice of a given order on a simplex (currently disabled for othe...