TrilinosCouplings  Development
 All Classes Namespaces Files Functions Pages
File List
Here is a list of all documented files with brief descriptions:
o*example_CurlLSFEM.cppExample solution of a div-curl system on a hexahedral mesh using curl-conforming (edge) elements
o*example_CVFEM.cppExample solution of an Advection Diffusion equation on a quadrilateral or triangular mesh using the CVFEM
o*example_DivLSFEM.cppExample solution of a div-curl system on a hexahedral mesh using div-conforming (face) elements
o*example_GradDiv.cppExample solution grad-div diffusion system with div-conforming (face) elements
o*example_Maxwell.cppExample solution of the eddy current Maxwell's equations using curl-conforming (edge) elements
o*example_Maxwell_Tpetra.cppExample solution of the eddy current Maxwell's equations using curl-conforming (edge) elements
o*example_Poisson.cppExample solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements
o*example_Poisson_NoFE_Tpetra.cppExample solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled but not solved
o*example_Poisson_stk.cppExample solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements
o*example_StabilizedADR.cppExample solution of a steady-state advection-diffusion-reaction equation with Dirichlet boundary conditon on a hexahedral mesh using nodal (Hgrad) elements and stabilization
o*HybridIntrepidPoisson2D_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
o*HybridIntrepidPoisson3D_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
o*IntrepidPoisson_Pamgen_Epetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved
o*IntrepidPoisson_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
o*ml_nox_fineinterface.H
o*ml_nox_preconditioner.H
o*ml_nox_preconditioner1.cpp
o*ml_nox_preconditioner2.cpp
o*ml_nox_preconditioner_utils.cppML nonlinear preconditioner and solver
o*nlnml_ConstrainedMultiLevelOperator.H
o*nlnml_finelevelnoxinterface.H
o*nlnml_nonlinearlevel.H
o*nlnml_preconditioner.H
o*nlnml_preconditioner1.cpp
o*nlnml_preconditioner_utils.cppML nonlinear preconditioner and solver utilities
o*nlnml_preconditioner_utils.HML nonlinear preconditioner and solver utility routines
o*nlnml_prepostoperator.H
o*TrilinosCouplings_IntrepidPoissonExample_SolveWithBelos.hppGeneric Belos solver for the Intrepid Poisson test problem example
\*TrilinosCouplings_IntrepidPoissonExampleHelpers.hppHelper functions for Poisson test problem with Intrepid + Pamgen