TrilinosCouplings  Development
IntrepidPoisson_Pamgen_Tpetra_main.cpp File Reference

Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved. More...

`#include <cstdlib>`
`#include "Teuchos_oblackholestream.hpp"`
`#include "Teuchos_TimeMonitor.hpp"`
`#include "Teuchos_XMLParameterListHelpers.hpp"`
`#include "Teuchos_StandardCatchMacros.hpp"`
`#include "TrilinosCouplings_config.h"`
`#include "TrilinosCouplings_TpetraIntrepidPoissonExample.hpp"`
`#include "TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp"`
`#include "Tpetra_Core.hpp"`
`#include "MatrixMarket_Tpetra.hpp"`
Include dependency graph for IntrepidPoisson_Pamgen_Tpetra_main.cpp:

## Functions

int main (int argc, char *argv[])

## Detailed Description

Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.

```   This example uses the following Trilinos packages:
```
• Pamgen to generate a Hexahedral mesh.
• Sacado to form the source term from user-specified manufactured solution.
• Intrepid to build the discretization matrix and right-hand side.
• Tpetra to handle the global sparse matrix and dense vector.
``` Poisson system:

div A grad u = f in Omega
u = g on Gamma

where
A is a material tensor (typically symmetric positive definite)
f is a given source term

Corresponding discrete linear system for nodal coefficients(x):

Kx = b