Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved. More...
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_GlobalMPISession.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_XMLParameterListHelpers.hpp"
#include "Teuchos_StandardCatchMacros.hpp"
#include "Epetra_Comm.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_DefaultSerialComm.hpp"
#include "TrilinosCouplings_config.h"
#include "TrilinosCouplings_EpetraIntrepidPoissonExample.hpp"
#include "TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp"
Functions | |
int | main (int argc, char *argv[]) |
Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved.
This example uses the following Trilinos packages:
Poisson system: div A grad u = f in Omega u = g on Gamma where A is a material tensor (typically symmetric positive definite) f is a given source term Corresponding discrete linear system for nodal coefficients(x): Kx = b K - HGrad stiffness matrix b - right hand side vector