Example: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved. More...
#include "Teuchos_oblackholestream.hpp"#include "Teuchos_GlobalMPISession.hpp"#include "Teuchos_TimeMonitor.hpp"#include "Teuchos_XMLParameterListHelpers.hpp"#include "Teuchos_StandardCatchMacros.hpp"#include "Tpetra_Core.hpp"#include "TrilinosCouplings_config.h"#include "TrilinosCouplings_TpetraIntrepidHybridPoisson2DExample.hpp"#include "TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp"#include <MatrixMarket_Tpetra.hpp>
Functions | |
| int | main (int argc, char *argv[]) |
Example: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.
This example uses the following Trilinos packages:
Poisson system:
div A grad u = f in Omega
u = g on Gamma
where
A is a material tensor (typically symmetric positive definite)
f is a given source term
Corresponding discrete linear system for nodal coefficients(x):
Kx = b
K - HGrad stiffness matrix
b - right hand side vector
1.8.5