ROL
Public Member Functions | Private Attributes | List of all members
ROL::ScalarLinearConstraint< Real > Class Template Reference

This equality constraint defines an affine hyperplane. More...

#include <ROL_ScalarLinearConstraint.hpp>

+ Inheritance diagram for ROL::ScalarLinearConstraint< Real >:

Public Member Functions

 ScalarLinearConstraint (const Ptr< const Vector< Real >> &a, const Real b)
 
void value (Vector< Real > &c, const Vector< Real > &x, Real &tol) override
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) override
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void update (const Vector< Real > &x, UpdateType type, int iter=-1)
 Update constraint function. More...
 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Attributes

const Ptr< const Vector< Real > > a_
 Dual vector defining hyperplane. More...
 
const Real b_
 Affine shift. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<typename Real>
class ROL::ScalarLinearConstraint< Real >

This equality constraint defines an affine hyperplane.

ROL's scalar linear equality constraint interface implements

\[ c(x) := \langle a, x\rangle_{\mathcal{X}^*,\mathcal{X}} - b = 0 \]

where \(a\in\mathcal{X}^*\) and \(b\in\mathbb{R}\). The range space of \(c\) is an ROL::SingletonVector with dimension 1.

Note: If \(a\neq 0\) then there exists an explicit solution of the augmented system. Namely,

\[ v_1 = I^{-1}(b_1-av_2) \quad\text{and}\quad v_2 = \frac{(\langle a,I^{-1}b_1\rangle_{\mathcal{X}^*,\mathcal{X}} - b_2)}{\|a\|_{\mathcal{X}^*}^2}\,. \]

Moreover, note that \(I^{-1}v\) for any \(v\in\mathcal{X}^*\) is implemented in ROL as v.dual().


Definition at line 46 of file ROL_ScalarLinearConstraint.hpp.

Constructor & Destructor Documentation

template<typename Real >
ROL::ScalarLinearConstraint< Real >::ScalarLinearConstraint ( const Ptr< const Vector< Real >> &  a,
const Real  b 
)

Definition at line 16 of file ROL_ScalarLinearConstraint_Def.hpp.

Member Function Documentation

template<typename Real >
void ROL::ScalarLinearConstraint< Real >::value ( Vector< Real > &  c,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 21 of file ROL_ScalarLinearConstraint_Def.hpp.

References ROL::SingletonVector< Real >::setValue().

template<typename Real >
void ROL::ScalarLinearConstraint< Real >::applyJacobian ( Vector< Real > &  jv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#91, where

\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 28 of file ROL_ScalarLinearConstraint_Def.hpp.

References ROL::SingletonVector< Real >::setValue().

template<typename Real >
void ROL::ScalarLinearConstraint< Real >::applyAdjointJacobian ( Vector< Real > &  ajv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

  @param[out]      ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector
  @param[in]       v   is a dual constraint-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#95, where

\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 37 of file ROL_ScalarLinearConstraint_Def.hpp.

References ROL::SingletonVector< Real >::getValue(), ROL::Vector< Real >::scale(), and ROL::Vector< Real >::set().

template<typename Real >
void ROL::ScalarLinearConstraint< Real >::applyAdjointHessian ( Vector< Real > &  ahuv,
const Vector< Real > &  u,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

  @param[out]      ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at @b x to vector @b u in direction @b v; a dual optimization-space vector
  @param[in]       u    is the direction vector; a dual constraint-space vector
  @param[in]       v    is an optimization-space vector
  @param[in]       x    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#100, where

\(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.


Reimplemented from ROL::Constraint< Real >.

Definition at line 46 of file ROL_ScalarLinearConstraint_Def.hpp.

References ROL::Vector< Real >::zero().

template<typename Real >
std::vector< Real > ROL::ScalarLinearConstraint< Real >::solveAugmentedSystem ( Vector< Real > &  v1,
Vector< Real > &  v2,
const Vector< Real > &  b1,
const Vector< Real > &  b2,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator.

Parameters
[out]v1is the optimization-space component of the result
[out]v2is the dual constraint-space component of the result
[in]b1is the dual optimization-space component of the right-hand side
[in]b2is the constraint-space component of the right-hand side
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis the nominal relative residual tolerance

On return, \( [\mathsf{v1} \,\, \mathsf{v2}] \) approximately solves the augmented system, where the size of the residual is governed by special stopping conditions.

The default implementation is the preconditioned generalized minimal residual (GMRES) method, which enables the use of nonsymmetric preconditioners.


Reimplemented from ROL::Constraint< Real >.

Definition at line 54 of file ROL_ScalarLinearConstraint_Def.hpp.

References ROL::Vector< Real >::axpy(), ROL::Vector< Real >::dual(), ROL::SingletonVector< Real >::getValue(), ROL::Vector< Real >::set(), and ROL::SingletonVector< Real >::setValue().

Member Data Documentation

template<typename Real>
const Ptr<const Vector<Real> > ROL::ScalarLinearConstraint< Real >::a_
private

Dual vector defining hyperplane.

Definition at line 48 of file ROL_ScalarLinearConstraint.hpp.

template<typename Real>
const Real ROL::ScalarLinearConstraint< Real >::b_
private

Affine shift.

Definition at line 49 of file ROL_ScalarLinearConstraint.hpp.


The documentation for this class was generated from the following files: