ROL
|
#include <ROL_Reduced_Constraint_SimOpt.hpp>
Public Member Functions | |
Reduced_Constraint_SimOpt (const ROL::Ptr< Constraint_SimOpt< Real > > &conVal, const ROL::Ptr< Constraint_SimOpt< Real > > &conRed, const ROL::Ptr< VectorController< Real > > &stateStore, const ROL::Ptr< Vector< Real > > &state, const ROL::Ptr< Vector< Real > > &control, const ROL::Ptr< Vector< Real > > &adjoint, const ROL::Ptr< Vector< Real > > &residual, const bool storage=true, const bool useFDhessVec=false) | |
Constructor. More... | |
Reduced_Constraint_SimOpt (const ROL::Ptr< Constraint_SimOpt< Real > > &conVal, const ROL::Ptr< Constraint_SimOpt< Real > > &conRed, const ROL::Ptr< VectorController< Real > > &stateStore, const ROL::Ptr< Vector< Real > > &state, const ROL::Ptr< Vector< Real > > &control, const ROL::Ptr< Vector< Real > > &adjoint, const ROL::Ptr< Vector< Real > > &residual, const ROL::Ptr< Vector< Real > > &dualstate, const ROL::Ptr< Vector< Real > > &dualcontrol, const ROL::Ptr< Vector< Real > > &dualadjoint, const ROL::Ptr< Vector< Real > > &dualresidual, const bool storage=true, const bool useFDhessVec=false) | |
Secondary, general constructor for use with dual optimization vector spaces where the user does not define the dual() method. More... | |
void | update (const Vector< Real > &z, bool flag=true, int iter=-1) |
Update the SimOpt objective function and equality constraint. More... | |
void | value (Vector< Real > &c, const Vector< Real > &z, Real &tol) |
Given \(z\in\mathcal{Z}\), evaluate the equality constraint \(\widehat{c}(z) = c(u(z),z)\) where \(u=u(z)\in\mathcal{U}\) solves \(e(u,z) = 0\). More... | |
void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &z, Real &tol) |
Given \(z\in\mathcal{Z}\), apply the Jacobian to a vector \(\widehat{c}'(z)v = c_u(u,z)s + c_z(u,z)v\) where \(s=s(u,z,v)\in\mathcal{U}^*\) solves \(e_u(u,z)s+e_z(u,z)v = 0\). More... | |
void | applyAdjointJacobian (Vector< Real > &ajw, const Vector< Real > &w, const Vector< Real > &z, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
void | applyAdjointHessian (Vector< Real > &ahwv, const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &z, Real &tol) |
Given \(z\in\mathcal{Z}\), evaluate the Hessian of the objective function \(\nabla^2\widehat{J}(z)\) in the direction \(v\in\mathcal{Z}\). More... | |
void | setParameter (const std::vector< Real > ¶m) |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
Private Member Functions | |
void | solve_state_equation (const Vector< Real > &z, Real &tol) |
void | solve_adjoint_equation (const Vector< Real > &w, const Vector< Real > &z, Real &tol) |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\) which solves the state equation, solve the adjoint equation \(c_u(u,z)^*\lambda + c_u(u,z)^*w = 0\) for \(\lambda=\lambda(u,z)\in\mathcal{C}^*\). More... | |
void | solve_state_sensitivity (const Vector< Real > &v, const Vector< Real > &z, Real &tol) |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\) which solves the state equation and a direction \(v\in\mathcal{Z}\), solve the state senstivity equation \(c_u(u,z)s + c_z(u,z)v = 0\) for \(s=u_z(z)v\in\mathcal{U}\). More... | |
void | solve_adjoint_sensitivity (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &z, Real &tol) |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\), the adjoint variable \(\lambda\in\mathcal{C}^*\), and a direction \(v\in\mathcal{Z}\), solve the adjoint sensitvity equation \(c_u(u,z)^*p + J_{uu}(u,z)s + J_{uz}(u,z)v + c_{uu}(u,z)(\cdot,s)^*\lambda + c_{zu}(u,z)(\cdot,v)^*\lambda = 0\) for \(p = \lambda_z(u(z),z)v\in\mathcal{C}^*\). More... | |
Private Attributes | |
const ROL::Ptr < Constraint_SimOpt< Real > > | conVal_ |
const ROL::Ptr < Constraint_SimOpt< Real > > | conRed_ |
const ROL::Ptr < VectorController< Real > > | stateStore_ |
ROL::Ptr< VectorController < Real > > | adjointStore_ |
ROL::Ptr< Vector< Real > > | state_ |
ROL::Ptr< Vector< Real > > | adjoint_ |
ROL::Ptr< Vector< Real > > | residual_ |
ROL::Ptr< Vector< Real > > | state_sens_ |
ROL::Ptr< Vector< Real > > | adjoint_sens_ |
ROL::Ptr< Vector< Real > > | dualstate_ |
ROL::Ptr< Vector< Real > > | dualstate1_ |
ROL::Ptr< Vector< Real > > | dualadjoint_ |
ROL::Ptr< Vector< Real > > | dualcontrol_ |
ROL::Ptr< Vector< Real > > | dualresidual_ |
const bool | storage_ |
const bool | useFDhessVec_ |
bool | updateFlag_ |
int | updateIter_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Definition at line 19 of file ROL_Reduced_Constraint_SimOpt.hpp.
|
inline |
Constructor.
[in] | obj | is a pointer to a SimOpt objective function. |
[in] | con | is a pointer to a SimOpt equality constraint. |
[in] | stateStore | is a pointer to a VectorController object. |
[in] | state | is a pointer to a state space vector, \(\mathcal{U}\). |
[in] | control | is a pointer to a optimization space vector, \(\mathcal{Z}\). |
[in] | adjoint | is a pointer to a dual constraint space vector, \(\mathcal{C}^*\). |
[in] | storage | is a flag whether or not to store computed states and adjoints. |
[in] | useFDhessVec | is a flag whether or not to use a finite-difference Hessian approximation. |
Definition at line 138 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::adjoint_sens_, ROL::Reduced_Constraint_SimOpt< Real >::adjointStore_, ROL::Reduced_Constraint_SimOpt< Real >::dualadjoint_, ROL::Reduced_Constraint_SimOpt< Real >::dualcontrol_, ROL::Reduced_Constraint_SimOpt< Real >::dualresidual_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate1_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate_, ROL::Reduced_Constraint_SimOpt< Real >::residual_, ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::state_sens_.
|
inline |
Secondary, general constructor for use with dual optimization vector spaces where the user does not define the dual() method.
[in] | obj | is a pointer to a SimOpt objective function. |
[in] | con | is a pointer to a SimOpt equality constraint. |
[in] | stateStore | is a pointer to a VectorController object. |
[in] | state | is a pointer to a state space vector, \(\mathcal{U}\). |
[in] | control | is a pointer to a optimization space vector, \(\mathcal{Z}\). |
[in] | adjoint | is a pointer to a dual constraint space vector, \(\mathcal{C}^*\). |
[in] | dualstate | is a pointer to a dual state space vector, \(\mathcal{U}^*\). |
[in] | dualadjoint | is a pointer to a constraint space vector, \(\mathcal{C}\). |
[in] | storage | is a flag whether or not to store computed states and adjoints. |
[in] | useFDhessVec | is a flag whether or not to use a finite-difference Hessian approximation. |
Definition at line 178 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::adjoint_sens_, ROL::Reduced_Constraint_SimOpt< Real >::adjointStore_, ROL::Reduced_Constraint_SimOpt< Real >::dualadjoint_, ROL::Reduced_Constraint_SimOpt< Real >::dualcontrol_, ROL::Reduced_Constraint_SimOpt< Real >::dualresidual_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate1_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate_, ROL::Reduced_Constraint_SimOpt< Real >::residual_, ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::state_sens_.
|
inlineprivate |
Definition at line 46 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::dualadjoint_, ROL::Reduced_Constraint_SimOpt< Real >::state_, ROL::Reduced_Constraint_SimOpt< Real >::stateStore_, ROL::Reduced_Constraint_SimOpt< Real >::storage_, ROL::Reduced_Constraint_SimOpt< Real >::updateFlag_, and ROL::Reduced_Constraint_SimOpt< Real >::updateIter_.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian(), and ROL::Reduced_Constraint_SimOpt< Real >::value().
|
inlineprivate |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\) which solves the state equation, solve the adjoint equation \(c_u(u,z)^*\lambda + c_u(u,z)^*w = 0\) for \(\lambda=\lambda(u,z)\in\mathcal{C}^*\).
Definition at line 73 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::adjointStore_, ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate_, ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::storage_.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), and ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian().
|
inlineprivate |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\) which solves the state equation and a direction \(v\in\mathcal{Z}\), solve the state senstivity equation \(c_u(u,z)s + c_z(u,z)v = 0\) for \(s=u_z(z)v\in\mathcal{U}\).
Definition at line 97 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::dualadjoint_, ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::state_sens_.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), and ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian().
|
inlineprivate |
Given \((u,z)\in\mathcal{U}\times\mathcal{Z}\), the adjoint variable \(\lambda\in\mathcal{C}^*\), and a direction \(v\in\mathcal{Z}\), solve the adjoint sensitvity equation \(c_u(u,z)^*p + J_{uu}(u,z)s + J_{uz}(u,z)v + c_{uu}(u,z)(\cdot,s)^*\lambda + c_{zu}(u,z)(\cdot,v)^*\lambda = 0\) for \(p = \lambda_z(u(z),z)v\in\mathcal{C}^*\).
Definition at line 111 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::adjoint_sens_, ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate1_, ROL::Reduced_Constraint_SimOpt< Real >::dualstate_, ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::state_sens_.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian().
|
inlinevirtual |
Update the SimOpt objective function and equality constraint.
Reimplemented from ROL::Constraint< Real >.
Definition at line 210 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjointStore_, ROL::Reduced_Constraint_SimOpt< Real >::stateStore_, ROL::Reduced_Constraint_SimOpt< Real >::updateFlag_, and ROL::Reduced_Constraint_SimOpt< Real >::updateIter_.
|
inlinevirtual |
Given \(z\in\mathcal{Z}\), evaluate the equality constraint \(\widehat{c}(z) = c(u(z),z)\) where \(u=u(z)\in\mathcal{U}\) solves \(e(u,z) = 0\).
Implements ROL::Constraint< Real >.
Definition at line 221 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::state_.
|
inlinevirtual |
Given \(z\in\mathcal{Z}\), apply the Jacobian to a vector \(\widehat{c}'(z)v = c_u(u,z)s + c_z(u,z)v\) where \(s=s(u,z,v)\in\mathcal{U}^*\) solves \(e_u(u,z)s+e_z(u,z)v = 0\).
Reimplemented from ROL::Constraint< Real >.
Definition at line 233 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Vector< Real >::plus(), ROL::Reduced_Constraint_SimOpt< Real >::residual_, ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::state_, and ROL::Reduced_Constraint_SimOpt< Real >::state_sens_.
|
inlinevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#95, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 246 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::dualcontrol_, ROL::Vector< Real >::plus(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::state_.
|
inlinevirtual |
Given \(z\in\mathcal{Z}\), evaluate the Hessian of the objective function \(\nabla^2\widehat{J}(z)\) in the direction \(v\in\mathcal{Z}\).
Reimplemented from ROL::Constraint< Real >.
Definition at line 262 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::adjoint_, ROL::Reduced_Constraint_SimOpt< Real >::adjoint_sens_, ROL::Constraint< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, ROL::Reduced_Constraint_SimOpt< Real >::dualcontrol_, ROL::Vector< Real >::plus(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::state_, ROL::Reduced_Constraint_SimOpt< Real >::state_sens_, and ROL::Reduced_Constraint_SimOpt< Real >::useFDhessVec_.
|
inlinevirtual |
Reimplemented from ROL::Constraint< Real >.
Definition at line 292 of file ROL_Reduced_Constraint_SimOpt.hpp.
References ROL::Reduced_Constraint_SimOpt< Real >::conRed_, ROL::Reduced_Constraint_SimOpt< Real >::conVal_, and ROL::Constraint< Real >::setParameter().
|
private |
Definition at line 21 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::setParameter(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::value().
|
private |
Definition at line 22 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::setParameter(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::solve_state_sensitivity().
|
private |
Definition at line 23 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::update().
|
private |
|
private |
Definition at line 27 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), ROL::Reduced_Constraint_SimOpt< Real >::solve_state_sensitivity(), and ROL::Reduced_Constraint_SimOpt< Real >::value().
|
private |
Definition at line 28 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity().
|
private |
Definition at line 29 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian(), and ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt().
|
private |
Definition at line 30 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian(), ROL::Reduced_Constraint_SimOpt< Real >::applyJacobian(), ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt(), ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity(), and ROL::Reduced_Constraint_SimOpt< Real >::solve_state_sensitivity().
|
private |
|
private |
|
private |
Definition at line 35 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt(), and ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_sensitivity().
|
private |
|
private |
|
private |
Definition at line 38 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::Reduced_Constraint_SimOpt().
|
private |
Definition at line 40 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::solve_adjoint_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation().
|
private |
Definition at line 41 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::applyAdjointHessian().
|
private |
Definition at line 43 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::update().
|
private |
Definition at line 44 of file ROL_Reduced_Constraint_SimOpt.hpp.
Referenced by ROL::Reduced_Constraint_SimOpt< Real >::solve_state_equation(), and ROL::Reduced_Constraint_SimOpt< Real >::update().