10 #ifndef ROL_CONSTRAINT_DEF_H
11 #define ROL_CONSTRAINT_DEF_H
13 #include "ROL_LinearAlgebra.hpp"
14 #include "ROL_LAPACK.hpp"
25 Real ctol = std::sqrt(ROL_EPSILON<Real>());
28 Real h = std::max(one,x.
norm()/v.
norm())*tol;
32 ROL::Ptr<Vector<Real> > c = jv.
clone();
33 this->
value(*c,x,ctol);
36 ROL::Ptr<Vector<Real> > xnew = x.
clone();
43 this->
value(jv,*xnew,ctol);
56 applyAdjointJacobian(ajv,v,x,v.
dual(),tol);
73 Real h(0), ctol = std::sqrt(ROL_EPSILON<Real>());
75 ROL::Ptr<Vector<Real> > xnew = x.
clone();
76 ROL::Ptr<Vector<Real> > ex = x.
clone();
77 ROL::Ptr<Vector<Real> > eajv = ajv.
clone();
78 ROL::Ptr<Vector<Real> > cnew = dualv.
clone();
79 ROL::Ptr<Vector<Real> > c0 = dualv.
clone();
80 this->
value(*c0,x,ctol);
83 for (
int i = 0; i < ajv.
dimension(); i++ ) {
86 h = std::max(one,x.
norm()/ex->norm())*tol;
90 this->
value(*cnew,*xnew,ctol);
94 ajv.
axpy(cnew->apply(v),*eajv);
131 template <
class Real>
138 Real h = std::max(static_cast<Real>(1),x.
norm()/v.
norm())*tol;
141 ROL::Ptr<Vector<Real> > aju = huv.
clone();
142 applyAdjointJacobian(*aju,u,x,tol);
145 ROL::Ptr<Vector<Real> > xnew = x.
clone();
152 applyAdjointJacobian(huv,u,*xnew,tol);
155 huv.
axpy(static_cast<Real>(-1),*aju);
156 huv.
scale(static_cast<Real>(1)/h);
160 template <
class Real>
169 const Real
zero(0), one(1);
178 tol = std::sqrt(b1.
dot(b1)+b2.
dot(b2))*tol;
184 Ptr<Vector<Real>> r1 = b1.
clone();
185 Ptr<Vector<Real>> r2 = b2.
clone();
186 Ptr<Vector<Real>> z1 = v1.
clone();
187 Ptr<Vector<Real>> z2 = v2.
clone();
188 Ptr<Vector<Real>> w1 = b1.
clone();
189 Ptr<Vector<Real>> w2 = b2.
clone();
190 std::vector<Ptr<Vector<Real>>> V1;
191 std::vector<Ptr<Vector<Real>>> V2;
192 Ptr<Vector<Real>> V2temp = b2.
clone();
193 std::vector<Ptr<Vector<Real>>> Z1;
194 std::vector<Ptr<Vector<Real>>> Z2;
195 Ptr<Vector<Real>> w1temp = b1.
clone();
196 Ptr<Vector<Real>> Z2temp = v2.
clone();
198 std::vector<Real> res(m+1,
zero);
199 LA::Matrix<Real> H(m+1,m);
200 LA::Vector<Real> cs(m);
201 LA::Vector<Real> sn(m);
202 LA::Vector<Real> s(m+1);
203 LA::Vector<Real> y(m+1);
204 LA::Vector<Real> cnorm(m);
205 LAPACK<int, Real> lapack;
212 r1->set(b1); r2->set(b2);
213 res[0] = std::sqrt(r1->dot(*r1) + r2->dot(*r2));
216 if (res[0] ==
zero) {
221 V1.push_back(b1.
clone()); (V1[0])->set(*r1); (V1[0])->scale(one/res[0]);
222 V2.push_back(b2.
clone()); (V2[0])->set(*r2); (V2[0])->scale(one/res[0]);
226 for (i=0; i<m; i++) {
229 V2temp->set(*(V2[i]));
230 applyPreconditioner(*Z2temp, *V2temp, x, b1, zerotol);
231 Z2.push_back(v2.
clone()); (Z2[i])->set(*Z2temp);
232 Z1.push_back(v1.
clone()); (Z1[i])->set((V1[i])->dual());
236 applyAdjointJacobian(*w1temp, *Z2temp, x, zerotol);
237 w1->set(*(V1[i])); w1->plus(*w1temp);
240 for (k=0; k<=i; k++) {
241 H(k,i) = w1->dot(*(V1[k])) + w2->dot(*(V2[k]));
242 w1->axpy(-H(k,i), *(V1[k]));
243 w2->axpy(-H(k,i), *(V2[k]));
245 H(i+1,i) = std::sqrt(w1->dot(*w1) + w2->dot(*w2));
247 V1.push_back(b1.
clone()); (V1[i+1])->set(*w1); (V1[i+1])->scale(one/H(i+1,i));
248 V2.push_back(b2.
clone()); (V2[i+1])->set(*w2); (V2[i+1])->scale(one/H(i+1,i));
251 for (k=0; k<=i-1; k++) {
252 temp = cs(k)*H(k,i) + sn(k)*H(k+1,i);
253 H(k+1,i) = -sn(k)*H(k,i) + cs(k)*H(k+1,i);
258 if ( H(i+1,i) ==
zero ) {
262 else if ( std::abs(H(i+1,i)) > std::abs(H(i,i)) ) {
263 temp = H(i,i) / H(i+1,i);
264 sn(i) = one / std::sqrt( one + temp*temp );
265 cs(i) = temp * sn(i);
268 temp = H(i+1,i) / H(i,i);
269 cs(i) = one / std::sqrt( one + temp*temp );
270 sn(i) = temp * cs(i);
275 s(i+1) = -sn(i)*s(i);
277 H(i,i) = cs(i)*H(i,i) + sn(i)*H(i+1,i);
279 resnrm = std::abs(s(i+1));
283 const char uplo =
'U';
284 const char trans =
'N';
285 const char diag =
'N';
286 const char normin =
'N';
290 lapack.LATRS(uplo, trans, diag, normin, i+1, H.values(), m+1, y.values(), &scaling, cnorm.values(), &info);
293 for (k=0; k<=i; k++) {
294 z1->axpy(y(k), *(Z1[k]));
295 z2->axpy(y(k), *(Z2[k]));
302 if (res[i+1] <= tol) {
331 template <
class Real>
335 const bool printToStream,
336 std::ostream & outStream,
339 std::vector<Real> steps(numSteps);
340 for(
int i=0;i<numSteps;++i) {
341 steps[i] = pow(10,-i);
344 return checkApplyJacobian(x,v,jv,steps,printToStream,outStream,order);
350 template <
class Real>
354 const std::vector<Real> &steps,
355 const bool printToStream,
356 std::ostream & outStream,
358 ROL_TEST_FOR_EXCEPTION( order<1 || order>4, std::invalid_argument,
359 "Error: finite difference order must be 1,2,3, or 4" );
366 Real tol = std::sqrt(ROL_EPSILON<Real>());
368 int numSteps = steps.size();
370 std::vector<Real> tmp(numVals);
371 std::vector<std::vector<Real> > jvCheck(numSteps, tmp);
375 oldFormatState.copyfmt(outStream);
378 ROL::Ptr<Vector<Real> > c = jv.
clone();
380 this->
value(*c, x, tol);
383 ROL::Ptr<Vector<Real> > Jv = jv.
clone();
385 Real normJv = Jv->norm();
388 ROL::Ptr<Vector<Real> > cdif = jv.
clone();
389 ROL::Ptr<Vector<Real> > cnew = jv.
clone();
390 ROL::Ptr<Vector<Real> > xnew = x.
clone();
392 for (
int i=0; i<numSteps; i++) {
399 cdif->scale(
weights[order-1][0]);
401 for(
int j=0; j<order; ++j) {
403 xnew->axpy(eta*
shifts[order-1][j], v);
405 if(
weights[order-1][j+1] != 0 ) {
407 this->
value(*cnew,*xnew,tol);
408 cdif->axpy(
weights[order-1][j+1],*cnew);
413 cdif->scale(one/eta);
417 jvCheck[i][1] = normJv;
418 jvCheck[i][2] = cdif->norm();
419 cdif->axpy(-one, *Jv);
420 jvCheck[i][3] = cdif->norm();
423 std::stringstream hist;
426 << std::setw(20) <<
"Step size"
427 << std::setw(20) <<
"norm(Jac*vec)"
428 << std::setw(20) <<
"norm(FD approx)"
429 << std::setw(20) <<
"norm(abs error)"
431 << std::setw(20) <<
"---------"
432 << std::setw(20) <<
"-------------"
433 << std::setw(20) <<
"---------------"
434 << std::setw(20) <<
"---------------"
437 hist << std::scientific << std::setprecision(11) << std::right
438 << std::setw(20) << jvCheck[i][0]
439 << std::setw(20) << jvCheck[i][1]
440 << std::setw(20) << jvCheck[i][2]
441 << std::setw(20) << jvCheck[i][3]
443 outStream << hist.str();
449 outStream.copyfmt(oldFormatState);
455 template <
class Real>
460 const bool printToStream,
461 std::ostream & outStream,
462 const int numSteps) {
463 Real tol = std::sqrt(ROL_EPSILON<Real>());
467 std::vector<Real> tmp(numVals);
468 std::vector<std::vector<Real> > ajvCheck(numSteps, tmp);
469 Real eta_factor = 1e-1;
473 ROL::Ptr<Vector<Real> > c0 = c.
clone();
474 ROL::Ptr<Vector<Real> > cnew = c.
clone();
475 ROL::Ptr<Vector<Real> > xnew = x.
clone();
476 ROL::Ptr<Vector<Real> > ajv0 = ajv.
clone();
477 ROL::Ptr<Vector<Real> > ajv1 = ajv.
clone();
478 ROL::Ptr<Vector<Real> > ex = x.
clone();
479 ROL::Ptr<Vector<Real> > eajv = ajv.
clone();
483 oldFormatState.copyfmt(outStream);
487 this->
value(*c0, x, tol);
490 this->applyAdjointJacobian(*ajv0, v, x, tol);
491 Real normAJv = ajv0->norm();
493 for (
int i=0; i<numSteps; i++) {
497 for (
int j = 0; j < ajv.
dimension(); j++ ) {
503 this->
value(*cnew,*xnew,tol);
504 cnew->axpy(-one,*c0);
505 cnew->scale(one/eta);
507 ajv1->axpy(cnew->apply(v),*eajv);
511 ajvCheck[i][0] = eta;
512 ajvCheck[i][1] = normAJv;
513 ajvCheck[i][2] = ajv1->norm();
514 ajv1->axpy(-one, *ajv0);
515 ajvCheck[i][3] = ajv1->norm();
518 std::stringstream hist;
521 << std::setw(20) <<
"Step size"
522 << std::setw(20) <<
"norm(adj(Jac)*vec)"
523 << std::setw(20) <<
"norm(FD approx)"
524 << std::setw(20) <<
"norm(abs error)"
526 << std::setw(20) <<
"---------"
527 << std::setw(20) <<
"------------------"
528 << std::setw(20) <<
"---------------"
529 << std::setw(20) <<
"---------------"
532 hist << std::scientific << std::setprecision(11) << std::right
533 << std::setw(20) << ajvCheck[i][0]
534 << std::setw(20) << ajvCheck[i][1]
535 << std::setw(20) << ajvCheck[i][2]
536 << std::setw(20) << ajvCheck[i][3]
538 outStream << hist.str();
542 eta = eta*eta_factor;
546 outStream.copyfmt(oldFormatState);
551 template <
class Real>
557 const bool printToStream,
558 std::ostream & outStream) {
559 Real tol = ROL_EPSILON<Real>();
561 ROL::Ptr<Vector<Real> > Jv = dualw.
clone();
562 ROL::Ptr<Vector<Real> > Jw = dualv.
clone();
566 applyAdjointJacobian(*Jw,w,x,tol);
569 Real vJw = v.
apply(*Jw);
571 Real wJv = w.
apply(*Jv);
573 Real diff = std::abs(wJv-vJw);
575 if ( printToStream ) {
576 std::stringstream hist;
577 hist << std::scientific << std::setprecision(8);
578 hist <<
"\nTest Consistency of Jacobian and its adjoint: \n |<w,Jv> - <adj(J)w,v>| = "
580 hist <<
" |<w,Jv>| = " << std::abs(wJv) <<
"\n";
581 hist <<
" Relative Error = " << diff / (std::abs(wJv)+ROL_UNDERFLOW<Real>()) <<
"\n";
582 outStream << hist.str();
587 template <
class Real>
592 const bool printToStream,
593 std::ostream & outStream,
596 std::vector<Real> steps(numSteps);
597 for(
int i=0;i<numSteps;++i) {
598 steps[i] = pow(10,-i);
601 return checkApplyAdjointHessian(x,u,v,hv,steps,printToStream,outStream,order);
605 template <
class Real>
610 const std::vector<Real> &steps,
611 const bool printToStream,
612 std::ostream & outStream,
618 Real tol = std::sqrt(ROL_EPSILON<Real>());
620 int numSteps = steps.size();
622 std::vector<Real> tmp(numVals);
623 std::vector<std::vector<Real> > ahuvCheck(numSteps, tmp);
626 ROL::Ptr<Vector<Real> > AJdif = hv.
clone();
627 ROL::Ptr<Vector<Real> > AJu = hv.
clone();
628 ROL::Ptr<Vector<Real> > AHuv = hv.
clone();
629 ROL::Ptr<Vector<Real> > AJnew = hv.
clone();
630 ROL::Ptr<Vector<Real> > xnew = x.
clone();
634 oldFormatState.copyfmt(outStream);
638 this->applyAdjointJacobian(*AJu, u, x, tol);
641 this->applyAdjointHessian(*AHuv, u, v, x, tol);
642 Real normAHuv = AHuv->norm();
644 for (
int i=0; i<numSteps; i++) {
652 AJdif->scale(
weights[order-1][0]);
654 for(
int j=0; j<order; ++j) {
656 xnew->axpy(eta*
shifts[order-1][j],v);
658 if(
weights[order-1][j+1] != 0 ) {
660 this->applyAdjointJacobian(*AJnew, u, *xnew, tol);
661 AJdif->axpy(
weights[order-1][j+1],*AJnew);
665 AJdif->scale(one/eta);
668 ahuvCheck[i][0] = eta;
669 ahuvCheck[i][1] = normAHuv;
670 ahuvCheck[i][2] = AJdif->norm();
671 AJdif->axpy(-one, *AHuv);
672 ahuvCheck[i][3] = AJdif->norm();
675 std::stringstream hist;
678 << std::setw(20) <<
"Step size"
679 << std::setw(20) <<
"norm(adj(H)(u,v))"
680 << std::setw(20) <<
"norm(FD approx)"
681 << std::setw(20) <<
"norm(abs error)"
683 << std::setw(20) <<
"---------"
684 << std::setw(20) <<
"-----------------"
685 << std::setw(20) <<
"---------------"
686 << std::setw(20) <<
"---------------"
689 hist << std::scientific << std::setprecision(11) << std::right
690 << std::setw(20) << ahuvCheck[i][0]
691 << std::setw(20) << ahuvCheck[i][1]
692 << std::setw(20) << ahuvCheck[i][2]
693 << std::setw(20) << ahuvCheck[i][3]
695 outStream << hist.str();
701 outStream.copyfmt(oldFormatState);
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
virtual void applyJacobian(Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the constraint Jacobian at , , to vector .
virtual void scale(const Real alpha)=0
Compute where .
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual Real checkAdjointConsistencyJacobian(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
virtual int dimension() const
Return dimension of the vector space.
virtual Real apply(const Vector< Real > &x) const
Apply to a dual vector. This is equivalent to the call .
virtual ROL::Ptr< Vector > basis(const int i) const
Return i-th basis vector.
const double weights[4][5]
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
virtual void update(const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1) override
virtual std::vector< std::vector< Real > > checkApplyAdjointJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
Finite-difference check for the application of the adjoint of constraint Jacobian.
ROL::Objective_SimOpt value
virtual void zero()
Set to zero vector.
Defines the linear algebra or vector space interface.
virtual Real dot(const Vector &x) const =0
Compute where .
void applyJacobian(ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &sol)
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
basic_nullstream< char, std::char_traits< char >> nullstream
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
virtual void applyAdjointHessian(Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the derivative of the adjoint of the constraint Jacobian at to vector in direction ...
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian(const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the application of the adjoint of constraint Hessian. ...
virtual std::vector< std::vector< Real > > checkApplyJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the constraint Jacobian application.
virtual void applyAdjointJacobian(Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the adjoint of the the constraint Jacobian at , , to vector .
virtual std::vector< Real > solveAugmentedSystem(Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
Approximately solves the augmented system where , , , , is an identity or Riesz operator...
virtual void set(const Vector &x)
Set where .
virtual Real norm() const =0
Returns where .