ROL
ROL_TypeB_PrimalDualActiveSetAlgorithm.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_TYPEB_PRIMALDUALACTIVESETALGORITHM_HPP
45 #define ROL_TYPEB_PRIMALDUALACTIVESETALGORITHM_HPP
46 
47 #include "ROL_TypeB_Algorithm.hpp"
48 #include "ROL_KrylovFactory.hpp"
49 #include "ROL_SecantFactory.hpp"
50 
55 namespace ROL {
56 namespace TypeB {
57 
58 template<typename Real>
60 private:
61  Ptr<Secant<Real>> secant_;
63  std::string secantName_;
64 
65  Ptr<Krylov<Real>> krylov_;
67  std::string krylovName_;
68 
72 
75 
76  int maxit_;
77  int iter_;
78  int flag_;
79  Real stol_;
80  Real gtol_;
81  Real scale_;
82  Real neps_;
83  Real itol_;
84  Real atolKrylov_;
85  Real rtolKrylov_;
87  bool feasible_;
88 
91  bool hasPoly_;
92 
93  class HessianPDAS : public LinearOperator<Real> {
94  private:
95  const Ptr<Objective<Real>> obj_;
96  const Ptr<BoundConstraint<Real>> bnd_;
97  const Ptr<const Vector<Real>> x_;
98  const Ptr<const Vector<Real>> xlam_;
99  const Real eps_;
100  const Ptr<Secant<Real>> secant_;
101  const bool useSecant_;
102  const Ptr<Vector<Real>> pwa_;
103  public:
104  HessianPDAS(const Ptr<Objective<Real>> &obj,
105  const Ptr<BoundConstraint<Real>> &bnd,
106  const Ptr<const Vector<Real>> &x,
107  const Ptr<const Vector<Real>> &xlam,
108  Real eps,
109  const Ptr<Secant<Real>> &secant,
110  bool useSecant,
111  const Ptr<Vector<Real>> &pwa)
112  : obj_(obj), bnd_(bnd), x_(x), xlam_(xlam), eps_(eps),
113  secant_(secant), useSecant_(useSecant), pwa_(pwa) {}
114  void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
115  pwa_->set(v);
116  bnd_->pruneActive(*pwa_,*xlam_,eps_);
117  if (!useSecant_) obj_->hessVec(Hv,*pwa_,*x_,tol);
118  else secant_->applyB(Hv,*pwa_);
119  bnd_->pruneActive(Hv,*xlam_,eps_);
120  }
121  };
122 
123  class PrecondPDAS : public LinearOperator<Real> {
124  private:
125  const Ptr<Objective<Real>> obj_;
126  const Ptr<BoundConstraint<Real>> bnd_;
127  const Ptr<const Vector<Real>> x_;
128  const Ptr<const Vector<Real>> xlam_;
129  const Real eps_;
130  const Ptr<Secant<Real>> secant_;
131  const bool useSecant_;
132  const Ptr<Vector<Real>> dwa_;
133  public:
134  PrecondPDAS(const Ptr<Objective<Real>> &obj,
135  const Ptr<BoundConstraint<Real>> &bnd,
136  const Ptr<const Vector<Real>> &x,
137  const Ptr<const Vector<Real>> &xlam,
138  Real eps,
139  const Ptr<Secant<Real>> &secant,
140  bool useSecant,
141  const Ptr<Vector<Real>> &dwa)
142  : obj_(obj), bnd_(bnd), x_(x), xlam_(xlam), eps_(eps),
143  secant_(secant), useSecant_(useSecant), dwa_(dwa) {}
144  void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
145  Hv.set(v.dual());
146  }
147  void applyInverse(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
148  dwa_->set(v);
149  bnd_->pruneActive(*dwa_,*xlam_,eps_);
150  if ( useSecant_ ) secant_->applyH(Hv,*dwa_);
151  else obj_->precond(Hv,*dwa_,*x_,tol);
152  bnd_->pruneActive(Hv,*xlam_,eps_);
153  dwa_->set(v);
154  bnd_->pruneInactive(*dwa_,*xlam_,eps_);
155  Hv.plus(dwa_->dual());
156  }
157  };
158 
159  class HessianPDAS_Poly : public LinearOperator<Real> {
160  private:
161  const Ptr<Objective<Real>> obj_;
162  const Ptr<BoundConstraint<Real>> bnd_;
163  const Ptr<Constraint<Real>> con_;
164  const Ptr<const Vector<Real>> x_;
165  const Ptr<const Vector<Real>> xlam_;
166  const Real eps_;
167  const Ptr<Secant<Real>> secant_;
168  const bool useSecant_;
169  const Ptr<Vector<Real>> pwa_, dwa_;
170  public:
172  const Ptr<BoundConstraint<Real>> &bnd,
173  const Ptr<Constraint<Real>> &con,
174  const Ptr<const Vector<Real>> &x,
175  const Ptr<const Vector<Real>> &xlam,
176  Real eps,
177  const Ptr<Secant<Real>> &secant,
178  bool useSecant,
179  const Ptr<Vector<Real>> &pwa,
180  const Ptr<Vector<Real>> &dwa)
181  : obj_(obj), bnd_(bnd), con_(con), x_(x), xlam_(xlam), eps_(eps),
182  secant_(secant), useSecant_(useSecant), pwa_(pwa), dwa_(dwa) {}
183  void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
184  PartitionedVector<Real> &Hvp = dynamic_cast<PartitionedVector<Real>&>(Hv);
185  const PartitionedVector<Real> &vp = dynamic_cast<const PartitionedVector<Real>&>(v);
186  pwa_->set(*vp.get(0));
187  bnd_->pruneActive(*pwa_,*xlam_,eps_);
188  if (!useSecant_) obj_->hessVec(*Hvp.get(0),*pwa_,*x_,tol);
189  else secant_->applyB(*Hvp.get(0),*pwa_);
190  con_->applyAdjointJacobian(*dwa_,*vp.get(1),*x_,tol);
191  Hvp.get(0)->plus(*dwa_);
192  bnd_->pruneActive(*Hvp.get(0),*xlam_,eps_);
193  con_->applyJacobian(*Hvp.get(1),*pwa_,*x_,tol);
194  }
195  };
196 
197  class PrecondPDAS_Poly : public LinearOperator<Real> {
198  private:
199  const Ptr<Objective<Real>> obj_;
200  const Ptr<BoundConstraint<Real>> bnd_;
201  const Ptr<const Vector<Real>> x_;
202  const Ptr<const Vector<Real>> xlam_;
203  const Real eps_;
204  const Ptr<Secant<Real>> secant_;
205  const bool useSecant_;
206  const Ptr<Vector<Real>> dwa_;
207  public:
209  const Ptr<BoundConstraint<Real>> &bnd,
210  const Ptr<const Vector<Real>> &x,
211  const Ptr<const Vector<Real>> &xlam,
212  Real eps,
213  const Ptr<Secant<Real>> &secant,
214  bool useSecant,
215  const Ptr<Vector<Real>> &dwa)
216  : obj_(obj), bnd_(bnd), x_(x), xlam_(xlam), eps_(eps),
217  secant_(secant), useSecant_(useSecant), dwa_(dwa) {}
218  void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
219  Hv.set(v.dual());
220  }
221  void applyInverse(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
222  PartitionedVector<Real> &Hvp = dynamic_cast<PartitionedVector<Real>&>(Hv);
223  const PartitionedVector<Real> &vp = dynamic_cast<const PartitionedVector<Real>&>(v);
224  dwa_->set(*vp.get(0));
225  bnd_->pruneActive(*dwa_,*xlam_,eps_);
226  if ( useSecant_ ) secant_->applyH(*Hvp.get(0),*dwa_);
227  else obj_->precond(*Hvp.get(0),*dwa_,*x_,tol);
228  bnd_->pruneActive(*Hvp.get(0),*xlam_,eps_);
229  dwa_->set(*vp.get(0));
230  bnd_->pruneInactive(*dwa_,*xlam_,eps_);
231  Hvp.get(0)->plus(dwa_->dual());
232  Hvp.get(1)->set(vp.get(1)->dual());
233  }
234  };
235 
239 
240  void initialize(Vector<Real> &x,
241  const Vector<Real> &g,
242  Objective<Real> &obj,
244  std::ostream &outStream = std::cout);
245 
246 public:
247 
248  PrimalDualActiveSetAlgorithm(ParameterList &list, const Ptr<Secant<Real>> &secant = nullPtr);
249 
251  void run( Vector<Real> &x,
252  const Vector<Real> &g,
253  Objective<Real> &obj,
255  std::ostream &outStream = std::cout) override;
256 
257  void writeHeader( std::ostream& os ) const override;
258 
259  void writeName( std::ostream& os ) const override;
260 
261  void writeOutput( std::ostream& os, const bool write_header = false ) const override;
262 
263 }; // class ROL::TypeB::PrimalDualActiveSetAlgorithm
264 
265 } // namespace TypeB
266 } // namespace ROL
267 
269 
270 #endif
void applyInverse(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply inverse of linear operator.
bool useSecantPrecond_
Whether or not to use a secant approximation to precondition inexact Newton.
Provides the interface to evaluate objective functions.
PrecondPDAS(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Ptr< const Vector< Real >> &x, const Ptr< const Vector< Real >> &xlam, Real eps, const Ptr< Secant< Real >> &secant, bool useSecant, const Ptr< Vector< Real >> &dwa)
void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, std::ostream &outStream=std::cout)
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
Definition: ROL_Vector.hpp:226
HessianPDAS_Poly(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Ptr< Constraint< Real >> &con, const Ptr< const Vector< Real >> &x, const Ptr< const Vector< Real >> &xlam, Real eps, const Ptr< Secant< Real >> &secant, bool useSecant, const Ptr< Vector< Real >> &pwa, const Ptr< Vector< Real >> &dwa)
Real stol_
PDAS minimum step size stopping tolerance (default: 1e-8)
void apply(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply linear operator.
ROL::Ptr< const Vector< Real > > get(size_type i) const
virtual void plus(const Vector &x)=0
Compute , where .
Real gtol_
PDAS gradient stopping tolerance (default: 1e-6)
PrecondPDAS_Poly(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Ptr< const Vector< Real >> &x, const Ptr< const Vector< Real >> &xlam, Real eps, const Ptr< Secant< Real >> &secant, bool useSecant, const Ptr< Vector< Real >> &dwa)
Defines the linear algebra of vector space on a generic partitioned vector.
Ptr< Secant< Real > > secant_
Secant object (used for quasi-Newton)
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void apply(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply linear operator.
void apply(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply linear operator.
EKrylov
Enumeration of Krylov methods.
void applyInverse(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply inverse of linear operator.
Real rtolKrylov_
Relative tolerance for Krylov solve (default: 1e-2)
PrimalDualActiveSetAlgorithm(ParameterList &list, const Ptr< Secant< Real >> &secant=nullPtr)
Real scale_
Scale for dual variables in the active set, (default: 1)
Provides an interface to run bound constrained optimization algorithms.
ESecant
Enumeration of secant update algorithms.
Definition: ROL_Types.hpp:486
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, std::ostream &outStream=std::cout) override
Run algorithm on bound constrained problems (Type-B). This general interface supports the use of dual...
bool feasible_
Flag whether the current iterate is feasible or not.
Provides interface for and implements limited-memory secant operators.
Definition: ROL_Secant.hpp:79
void writeOutput(std::ostream &os, const bool write_header=false) const override
Print iterate status.
int flagKrylov_
Termination flag for Krylov method (used for inexact Newton)
Provides the interface to apply a linear operator.
Provides the interface to apply upper and lower bound constraints.
int totalKrylov_
Total number of Krylov iterations per PDAS iteration.
int maxit_
Maximum number of PDAS steps (default: 10)
bool useSecantHessVec_
Whether or not to use to a secant approximation as the Hessian.
void apply(Vector< Real > &Hv, const Vector< Real > &v, Real &tol) const
Apply linear operator.
HessianPDAS(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Ptr< const Vector< Real >> &x, const Ptr< const Vector< Real >> &xlam, Real eps, const Ptr< Secant< Real >> &secant, bool useSecant, const Ptr< Vector< Real >> &pwa)
void writeHeader(std::ostream &os) const override
Print iterate header.
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
int maxitKrylov_
Maximum number of Krylov iterations (default: 100)
Ptr< Krylov< Real > > krylov_
Krylov solver object (used for inexact Newton)
Provides an interface to run the projected secant algorithm.
void writeName(std::ostream &os) const override
Print step name.
Defines the general constraint operator interface.
Real atolKrylov_
Absolute tolerance for Krylov solve (default: 1e-4)
int iterKrylov_
Number of Krylov iterations (used for inexact Newton)