ROL
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
ROL::MeanVariance< Real > Class Template Reference

Provides an interface for the mean plus a sum of arbitrary order variances. More...

#include <ROL_MeanVariance.hpp>

+ Inheritance diagram for ROL::MeanVariance< Real >:

Public Member Functions

 MeanVariance (const Real order, const Real coeff, const Ptr< PositiveFunction< Real > > &pf)
 Constructor. More...
 
 MeanVariance (const std::vector< Real > &order, const std::vector< Real > &coeff, const Ptr< PositiveFunction< Real > > &pf)
 Constructor. More...
 
 MeanVariance (ROL::ParameterList &parlist)
 Constructor. More...
 
void setStorage (const Ptr< ScalarController< Real >> &value_storage, const Ptr< VectorController< Real >> &gradient_storage)
 
void setHessVecStorage (const Ptr< ScalarController< Real >> &gradvec_storage, const Ptr< VectorController< Real >> &hessvec_storage)
 
void updateValue (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal storage for value computation. More...
 
Real getValue (const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure value. More...
 
void updateGradient (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for gradient computation. More...
 
void getGradient (Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure (sub)gradient. More...
 
void updateHessVec (Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for Hessian-time-a-vector computation. More...
 
void getHessVec (Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure Hessian-times-a-vector. More...
 
- Public Member Functions inherited from ROL::RandVarFunctional< Real >
virtual ~RandVarFunctional ()
 
 RandVarFunctional (void)
 
 weight_ (0)
 
void useStorage (bool storage)
 
void useHessVecStorage (bool storage)
 
virtual void resetStorage (bool flag=true)
 Reset internal storage. More...
 
virtual void resetStorage (UpdateType type)
 
virtual void initialize (const Vector< Real > &x)
 Initialize temporary variables. More...
 
virtual void setSample (const std::vector< Real > &point, const Real weight)
 
virtual Real computeStatistic (const Ptr< const std::vector< Real >> &xstat) const
 Compute statistic. More...
 

Private Types

typedef std::vector< Real >
::size_type 
uint
 

Private Member Functions

void initializeMV (void)
 
void checkInputs (void)
 

Private Attributes

Ptr< PositiveFunction< Real > > positiveFunction_
 
std::vector< Real > order_
 
std::vector< Real > coeff_
 
uint NumMoments_
 
Ptr< ScalarController< Real > > values_
 
Ptr< ScalarController< Real > > gradvecs_
 
Ptr< VectorController< Real > > gradients_
 
Ptr< VectorController< Real > > hessvecs_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::RandVarFunctional< Real >
Real computeValue (Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
void computeGradient (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
Real computeGradVec (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
void computeHessVec (Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
- Protected Attributes inherited from ROL::RandVarFunctional< Real >
Real val_
 
Real gv_
 
Ptr< Vector< Real > > g_
 
Ptr< Vector< Real > > hv_
 
Ptr< Vector< Real > > dualVector_
 
bool firstReset_
 
std::vector< Real > point_
 
Real weight_
 

Detailed Description

template<class Real>
class ROL::MeanVariance< Real >

Provides an interface for the mean plus a sum of arbitrary order variances.

The mean plus variances risk measure is

\[ \mathcal{R}(X) = \mathbb{E}[X] + \sum_{k=1}^n c_k \mathbb{E}[\wp(X-\mathbb{E}[X])^{p_k}] \]

where \(\wp:\mathbb{R}\to[0,\infty)\) is either the absolute value or \((x)_+ = \max\{0,x\}\), \(c_k > 0\) and \(p_k\in\mathbb{N}\). \(\mathcal{R}\) is law-invariant, but not coherent since it violates positive homogeneity. When \(\wp(x) = |x|\), \(\mathcal{R}\) also violates monotonicity.

When using derivative-based optimization, the user can provide a smooth approximation of \((\cdot)_+\) using the ROL::PositiveFunction class.

Definition at line 44 of file ROL_MeanVariance.hpp.

Member Typedef Documentation

template<class Real >
typedef std::vector<Real>::size_type ROL::MeanVariance< Real >::uint
private

Definition at line 45 of file ROL_MeanVariance.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::MeanVariance< Real >::MeanVariance ( const Real  order,
const Real  coeff,
const Ptr< PositiveFunction< Real > > &  pf 
)
inline

Constructor.

Parameters
[in]orderis the variance order
[in]coeffis the weight for variance term
[in]pfis the plus function or an approximation

This constructor produces a mean plus variance risk measure with a single variance.

Definition at line 107 of file ROL_MeanVariance.hpp.

References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, and ROL::MeanVariance< Real >::order_.

template<class Real >
ROL::MeanVariance< Real >::MeanVariance ( const std::vector< Real > &  order,
const std::vector< Real > &  coeff,
const Ptr< PositiveFunction< Real > > &  pf 
)
inline

Constructor.

Parameters
[in]orderis a vector of variance orders
[in]coeffis a vector of weights for the variance terms
[in]pfis the plus function or an approximation

This constructor produces a mean plus variance risk measure with an arbitrary number of variances.

Definition at line 125 of file ROL_MeanVariance.hpp.

References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, and ROL::MeanVariance< Real >::order_.

template<class Real >
ROL::MeanVariance< Real >::MeanVariance ( ROL::ParameterList &  parlist)
inline

Constructor.

Parameters
[in]parlistis a parameter list specifying inputs

parlist should contain sublists "SOL"->"Risk Measure"->"Mean Plus Variance" and within the "Mean Plus Variance" sublist should have the following parameters

  • "Orders" (array of unsigned integers)
  • "Coefficients" (array of positive scalars)
  • "Deviation Type" (eighter "Upper" or "Absolute")
  • A sublist for positive function information.

Definition at line 151 of file ROL_MeanVariance.hpp.

References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, ROL::MeanVariance< Real >::order_, and ROL::MeanVariance< Real >::positiveFunction_.

Member Function Documentation

template<class Real >
void ROL::MeanVariance< Real >::initializeMV ( void  )
inlineprivate
template<class Real >
void ROL::MeanVariance< Real >::checkInputs ( void  )
inlineprivate
template<class Real >
void ROL::MeanVariance< Real >::setStorage ( const Ptr< ScalarController< Real >> &  value_storage,
const Ptr< VectorController< Real >> &  gradient_storage 
)
inlinevirtual
template<class Real >
void ROL::MeanVariance< Real >::setHessVecStorage ( const Ptr< ScalarController< Real >> &  gradvec_storage,
const Ptr< VectorController< Real >> &  hessvec_storage 
)
inlinevirtual
template<class Real >
void ROL::MeanVariance< Real >::updateValue ( Objective< Real > &  obj,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal storage for value computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 189 of file ROL_MeanVariance.hpp.

References ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
Real ROL::MeanVariance< Real >::getValue ( const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual
template<class Real >
void ROL::MeanVariance< Real >::updateGradient ( Objective< Real > &  obj,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal risk measure storage for gradient computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]gis the gradient of the random variable objective function at the current sample point
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 219 of file ROL_MeanVariance.hpp.

References ROL::RandVarFunctional< Real >::computeGradient(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
void ROL::MeanVariance< Real >::getGradient ( Vector< Real > &  g,
std::vector< Real > &  gstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual

Return risk measure (sub)gradient.

Parameters
[out]gis the (sub)gradient of the risk measure
[in]sampleris the ROL::SampleGenerator used to sample the objective function

Upon return, getGradient returns \(\theta\in\partial\mathcal{R}(f(x_0))\) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\) and \(\partial\mathcal{R}(X)\) denotes the subdifferential of \(\mathcal{R}\) at \(X\).

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 229 of file ROL_MeanVariance.hpp.

References ROL::MeanVariance< Real >::coeff_, ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::SampleGenerator< Real >::getMyPoint(), ROL::SampleGenerator< Real >::getMyWeight(), ROL::MeanVariance< Real >::gradients_, ROL::MeanVariance< Real >::NumMoments_, ROL::SampleGenerator< Real >::numMySamples(), ROL::MeanVariance< Real >::order_, ROL::Vector< Real >::plus(), ROL::MeanVariance< Real >::positiveFunction_, ROL::Vector< Real >::scale(), ROL::SampleGenerator< Real >::start(), ROL::SampleGenerator< Real >::sumAll(), ROL::RandVarFunctional< Real >::val_, ROL::MeanVariance< Real >::values_, and zero.

template<class Real >
void ROL::MeanVariance< Real >::updateHessVec ( Objective< Real > &  obj,
const Vector< Real > &  v,
const std::vector< Real > &  vstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal risk measure storage for Hessian-time-a-vector computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]gis the gradient of the random variable objective function at the current sample point
[in]gvis the gradient of the random variable objective function at the current sample point applied to the vector v0
[in]hvis the Hessian of the random variable objective function at the current sample point applied to the vector v0
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 262 of file ROL_MeanVariance.hpp.

References ROL::RandVarFunctional< Real >::computeGradVec(), ROL::RandVarFunctional< Real >::computeHessVec(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::gv_, ROL::RandVarFunctional< Real >::hv_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
void ROL::MeanVariance< Real >::getHessVec ( Vector< Real > &  hv,
std::vector< Real > &  hvstat,
const Vector< Real > &  v,
const std::vector< Real > &  vstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual

Member Data Documentation

template<class Real >
Ptr<PositiveFunction<Real> > ROL::MeanVariance< Real >::positiveFunction_
private
template<class Real >
std::vector<Real> ROL::MeanVariance< Real >::order_
private
template<class Real >
std::vector<Real> ROL::MeanVariance< Real >::coeff_
private
template<class Real >
uint ROL::MeanVariance< Real >::NumMoments_
private
template<class Real >
Ptr<ScalarController<Real> > ROL::MeanVariance< Real >::values_
private
template<class Real >
Ptr<ScalarController<Real> > ROL::MeanVariance< Real >::gradvecs_
private
template<class Real >
Ptr<VectorController<Real> > ROL::MeanVariance< Real >::gradients_
private
template<class Real >
Ptr<VectorController<Real> > ROL::MeanVariance< Real >::hessvecs_
private

The documentation for this class was generated from the following file: