ROL
|
Provides an interface for the mean plus a sum of arbitrary order variances. More...
#include <ROL_MeanVariance.hpp>
Public Member Functions | |
MeanVariance (const Real order, const Real coeff, const Ptr< PositiveFunction< Real > > &pf) | |
Constructor. More... | |
MeanVariance (const std::vector< Real > &order, const std::vector< Real > &coeff, const Ptr< PositiveFunction< Real > > &pf) | |
Constructor. More... | |
MeanVariance (ROL::ParameterList &parlist) | |
Constructor. More... | |
void | setStorage (const Ptr< ScalarController< Real >> &value_storage, const Ptr< VectorController< Real >> &gradient_storage) |
void | setHessVecStorage (const Ptr< ScalarController< Real >> &gradvec_storage, const Ptr< VectorController< Real >> &hessvec_storage) |
void | updateValue (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol) |
Update internal storage for value computation. More... | |
Real | getValue (const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler) |
Return risk measure value. More... | |
void | updateGradient (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol) |
Update internal risk measure storage for gradient computation. More... | |
void | getGradient (Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler) |
Return risk measure (sub)gradient. More... | |
void | updateHessVec (Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol) |
Update internal risk measure storage for Hessian-time-a-vector computation. More... | |
void | getHessVec (Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler) |
Return risk measure Hessian-times-a-vector. More... | |
Public Member Functions inherited from ROL::RandVarFunctional< Real > | |
virtual | ~RandVarFunctional () |
RandVarFunctional (void) | |
weight_ (0) | |
void | useStorage (bool storage) |
void | useHessVecStorage (bool storage) |
virtual void | resetStorage (bool flag=true) |
Reset internal storage. More... | |
virtual void | resetStorage (UpdateType type) |
virtual void | initialize (const Vector< Real > &x) |
Initialize temporary variables. More... | |
virtual void | setSample (const std::vector< Real > &point, const Real weight) |
virtual Real | computeStatistic (const Ptr< const std::vector< Real >> &xstat) const |
Compute statistic. More... | |
Private Types | |
typedef std::vector< Real > ::size_type | uint |
Private Member Functions | |
void | initializeMV (void) |
void | checkInputs (void) |
Private Attributes | |
Ptr< PositiveFunction< Real > > | positiveFunction_ |
std::vector< Real > | order_ |
std::vector< Real > | coeff_ |
uint | NumMoments_ |
Ptr< ScalarController< Real > > | values_ |
Ptr< ScalarController< Real > > | gradvecs_ |
Ptr< VectorController< Real > > | gradients_ |
Ptr< VectorController< Real > > | hessvecs_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::RandVarFunctional< Real > | |
Real | computeValue (Objective< Real > &obj, const Vector< Real > &x, Real &tol) |
void | computeGradient (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol) |
Real | computeGradVec (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
void | computeHessVec (Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Protected Attributes inherited from ROL::RandVarFunctional< Real > | |
Real | val_ |
Real | gv_ |
Ptr< Vector< Real > > | g_ |
Ptr< Vector< Real > > | hv_ |
Ptr< Vector< Real > > | dualVector_ |
bool | firstReset_ |
std::vector< Real > | point_ |
Real | weight_ |
Provides an interface for the mean plus a sum of arbitrary order variances.
The mean plus variances risk measure is
\[ \mathcal{R}(X) = \mathbb{E}[X] + \sum_{k=1}^n c_k \mathbb{E}[\wp(X-\mathbb{E}[X])^{p_k}] \]
where \(\wp:\mathbb{R}\to[0,\infty)\) is either the absolute value or \((x)_+ = \max\{0,x\}\), \(c_k > 0\) and \(p_k\in\mathbb{N}\). \(\mathcal{R}\) is law-invariant, but not coherent since it violates positive homogeneity. When \(\wp(x) = |x|\), \(\mathcal{R}\) also violates monotonicity.
When using derivative-based optimization, the user can provide a smooth approximation of \((\cdot)_+\) using the ROL::PositiveFunction class.
Definition at line 44 of file ROL_MeanVariance.hpp.
|
private |
Definition at line 45 of file ROL_MeanVariance.hpp.
|
inline |
Constructor.
[in] | order | is the variance order |
[in] | coeff | is the weight for variance term |
[in] | pf | is the plus function or an approximation |
This constructor produces a mean plus variance risk measure with a single variance.
Definition at line 107 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, and ROL::MeanVariance< Real >::order_.
|
inline |
Constructor.
[in] | order | is a vector of variance orders |
[in] | coeff | is a vector of weights for the variance terms |
[in] | pf | is the plus function or an approximation |
This constructor produces a mean plus variance risk measure with an arbitrary number of variances.
Definition at line 125 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, and ROL::MeanVariance< Real >::order_.
|
inline |
Constructor.
[in] | parlist | is a parameter list specifying inputs |
parlist should contain sublists "SOL"->"Risk Measure"->"Mean Plus Variance" and within the "Mean Plus Variance" sublist should have the following parameters
Definition at line 151 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::NumMoments_, ROL::MeanVariance< Real >::order_, and ROL::MeanVariance< Real >::positiveFunction_.
|
inlineprivate |
Definition at line 71 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::gradients_, ROL::MeanVariance< Real >::gradvecs_, ROL::MeanVariance< Real >::hessvecs_, ROL::RandVarFunctional< Real >::setHessVecStorage(), ROL::RandVarFunctional< Real >::setStorage(), and ROL::MeanVariance< Real >::values_.
Referenced by ROL::MeanVariance< Real >::checkInputs().
|
inlineprivate |
Definition at line 81 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::coeff_, ROL::MeanVariance< Real >::initializeMV(), ROL::MeanVariance< Real >::order_, ROL::MeanVariance< Real >::positiveFunction_, and zero.
Referenced by ROL::MeanVariance< Real >::MeanVariance().
|
inlinevirtual |
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 175 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::gradients_, ROL::RandVarFunctional< Real >::setStorage(), and ROL::MeanVariance< Real >::values_.
|
inlinevirtual |
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 182 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::gradvecs_, ROL::MeanVariance< Real >::hessvecs_, and ROL::RandVarFunctional< Real >::setHessVecStorage().
|
inlinevirtual |
Update internal storage for value computation.
[in] | val | is the value of the random variable objective function at the current sample point |
[in] | weight | is the weight associated with the current sample point |
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 189 of file ROL_MeanVariance.hpp.
References ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.
|
inlinevirtual |
Return risk measure value.
[in] | sampler | is the ROL::SampleGenerator used to sample the objective function |
Upon return, getValue returns \(\mathcal{R}(f(x_0))\) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\).
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 197 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::coeff_, ROL::SampleGenerator< Real >::getMyPoint(), ROL::SampleGenerator< Real >::getMyWeight(), ROL::MeanVariance< Real >::NumMoments_, ROL::SampleGenerator< Real >::numMySamples(), ROL::MeanVariance< Real >::order_, ROL::MeanVariance< Real >::positiveFunction_, ROL::SampleGenerator< Real >::start(), ROL::SampleGenerator< Real >::sumAll(), ROL::RandVarFunctional< Real >::val_, and ROL::MeanVariance< Real >::values_.
|
inlinevirtual |
Update internal risk measure storage for gradient computation.
[in] | val | is the value of the random variable objective function at the current sample point |
[in] | g | is the gradient of the random variable objective function at the current sample point |
[in] | weight | is the weight associated with the current sample point |
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 219 of file ROL_MeanVariance.hpp.
References ROL::RandVarFunctional< Real >::computeGradient(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.
|
inlinevirtual |
Return risk measure (sub)gradient.
[out] | g | is the (sub)gradient of the risk measure |
[in] | sampler | is the ROL::SampleGenerator used to sample the objective function |
Upon return, getGradient returns \(\theta\in\partial\mathcal{R}(f(x_0))\) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\) and \(\partial\mathcal{R}(X)\) denotes the subdifferential of \(\mathcal{R}\) at \(X\).
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 229 of file ROL_MeanVariance.hpp.
References ROL::MeanVariance< Real >::coeff_, ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::SampleGenerator< Real >::getMyPoint(), ROL::SampleGenerator< Real >::getMyWeight(), ROL::MeanVariance< Real >::gradients_, ROL::MeanVariance< Real >::NumMoments_, ROL::SampleGenerator< Real >::numMySamples(), ROL::MeanVariance< Real >::order_, ROL::Vector< Real >::plus(), ROL::MeanVariance< Real >::positiveFunction_, ROL::Vector< Real >::scale(), ROL::SampleGenerator< Real >::start(), ROL::SampleGenerator< Real >::sumAll(), ROL::RandVarFunctional< Real >::val_, ROL::MeanVariance< Real >::values_, and zero.
|
inlinevirtual |
Update internal risk measure storage for Hessian-time-a-vector computation.
[in] | val | is the value of the random variable objective function at the current sample point |
[in] | g | is the gradient of the random variable objective function at the current sample point |
[in] | gv | is the gradient of the random variable objective function at the current sample point applied to the vector v0 |
[in] | hv | is the Hessian of the random variable objective function at the current sample point applied to the vector v0 |
[in] | weight | is the weight associated with the current sample point |
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 262 of file ROL_MeanVariance.hpp.
References ROL::RandVarFunctional< Real >::computeGradVec(), ROL::RandVarFunctional< Real >::computeHessVec(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::gv_, ROL::RandVarFunctional< Real >::hv_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.
|
inlinevirtual |
Return risk measure Hessian-times-a-vector.
[out] | hv | is the Hessian-times-a-vector of the risk measure |
[in] | sampler | is the ROL::SampleGenerator used to sample the objective function |
Upon return, getHessVec returns \(\nabla^2 \mathcal{R}(f(x_0))v_0\) (if available) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\).
Reimplemented from ROL::RandVarFunctional< Real >.
Definition at line 277 of file ROL_MeanVariance.hpp.
References ROL::Vector< Real >::axpy(), ROL::MeanVariance< Real >::coeff_, ROL::RandVarFunctional< Real >::dualVector_, ROL::RandVarFunctional< Real >::g_, ROL::SampleGenerator< Real >::getMyPoint(), ROL::SampleGenerator< Real >::getMyWeight(), ROL::MeanVariance< Real >::gradients_, ROL::MeanVariance< Real >::gradvecs_, ROL::RandVarFunctional< Real >::gv_, ROL::MeanVariance< Real >::hessvecs_, ROL::RandVarFunctional< Real >::hv_, ROL::MeanVariance< Real >::NumMoments_, ROL::SampleGenerator< Real >::numMySamples(), ROL::MeanVariance< Real >::order_, ROL::Vector< Real >::plus(), ROL::MeanVariance< Real >::positiveFunction_, ROL::Vector< Real >::scale(), ROL::SampleGenerator< Real >::start(), ROL::SampleGenerator< Real >::sumAll(), ROL::RandVarFunctional< Real >::val_, ROL::MeanVariance< Real >::values_, and zero.
|
private |
Definition at line 47 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::getValue(), and ROL::MeanVariance< Real >::MeanVariance().
|
private |
Definition at line 48 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::getValue(), and ROL::MeanVariance< Real >::MeanVariance().
|
private |
Definition at line 49 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::checkInputs(), ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::getValue(), and ROL::MeanVariance< Real >::MeanVariance().
|
private |
Definition at line 50 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::getValue(), and ROL::MeanVariance< Real >::MeanVariance().
|
private |
Definition at line 52 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::getValue(), ROL::MeanVariance< Real >::initializeMV(), and ROL::MeanVariance< Real >::setStorage().
|
private |
Definition at line 53 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::initializeMV(), and ROL::MeanVariance< Real >::setHessVecStorage().
|
private |
Definition at line 54 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::getGradient(), ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::initializeMV(), and ROL::MeanVariance< Real >::setStorage().
|
private |
Definition at line 55 of file ROL_MeanVariance.hpp.
Referenced by ROL::MeanVariance< Real >::getHessVec(), ROL::MeanVariance< Real >::initializeMV(), and ROL::MeanVariance< Real >::setHessVecStorage().