ROL
Public Member Functions | Private Attributes | List of all members
ROL::ElasticObjective< Real > Class Template Reference

Provides the interface to evaluate the elastic augmented Lagrangian. More...

#include <ROL_ElasticObjective.hpp>

+ Inheritance diagram for ROL::ElasticObjective< Real >:

Public Member Functions

 ElasticObjective (const Ptr< Objective< Real >> &obj, const Ptr< Constraint< Real >> &con, const Real penaltyParameter, const Real sigma, const Vector< Real > &dualOptVec, const Vector< Real > &primConVec, const Vector< Real > &dualConVec, ParameterList &parlist)
 
 ElasticObjective (const Ptr< Objective< Real >> &obj, const Ptr< Constraint< Real >> &con, const Real penaltyParameter, const Real sigma, const Vector< Real > &dualOptVec, const Vector< Real > &primConVec, const Vector< Real > &dualConVec, const bool scaleLagrangian, const int HessianApprox)
 
void update (const Vector< Real > &x, UpdateType type, int iter=-1) override
 Update objective function. More...
 
Real value (const Vector< Real > &x, Real &tol) override
 Compute value. More...
 
void gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol) override
 Compute gradient. More...
 
void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply Hessian approximation to vector. More...
 
void setScaling (const Real fscale=1.0, const Real cscale=1.0)
 
Real getObjectiveValue (const Vector< Real > &x, Real &tol)
 
const Ptr< const Vector< Real > > getObjectiveGradient (const Vector< Real > &x, Real &tol)
 
const Ptr< const Vector< Real > > getConstraintVec (const Vector< Real > &x, Real &tol)
 
int getNumberConstraintEvaluations (void) const
 
int getNumberFunctionEvaluations (void) const
 
int getNumberGradientEvaluations (void) const
 
void reset (const Vector< Real > &multiplier, Real penaltyParameter, Real sigma)
 
const Ptr
< AugmentedLagrangianObjective
< Real > > 
getAugmentedLagrangian (void) const
 
- Public Member Functions inherited from ROL::Objective< Real >
virtual ~Objective ()
 
 Objective ()
 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update objective function. More...
 
virtual Real dirDeriv (const Vector< Real > &x, const Vector< Real > &d, Real &tol)
 Compute directional derivative. More...
 
virtual void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply inverse Hessian approximation to vector. More...
 
virtual void precond (Vector< Real > &Pv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply preconditioner to vector. More...
 
virtual void prox (Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol)
 Compute the proximity operator. More...
 
virtual void proxJacVec (Vector< Real > &Jv, const Vector< Real > &v, const Vector< Real > &x, Real t, Real &tol)
 Apply the Jacobian of the proximity operator. More...
 
virtual std::vector
< std::vector< Real > > 
checkGradient (const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference gradient check. More...
 
virtual std::vector
< std::vector< Real > > 
checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference gradient check. More...
 
virtual std::vector
< std::vector< Real > > 
checkGradient (const Vector< Real > &x, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference gradient check with specified step sizes. More...
 
virtual std::vector
< std::vector< Real > > 
checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference gradient check with specified step sizes. More...
 
virtual std::vector
< std::vector< Real > > 
checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference Hessian-applied-to-vector check. More...
 
virtual std::vector
< std::vector< Real > > 
checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference Hessian-applied-to-vector check. More...
 
virtual std::vector
< std::vector< Real > > 
checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference Hessian-applied-to-vector check with specified step sizes. More...
 
virtual std::vector
< std::vector< Real > > 
checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference Hessian-applied-to-vector check with specified step sizes. More...
 
virtual std::vector< Real > checkHessSym (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
 Hessian symmetry check. More...
 
virtual std::vector< Real > checkHessSym (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
 Hessian symmetry check. More...
 
virtual std::vector
< std::vector< Real > > 
checkProxJacVec (const Vector< Real > &x, const Vector< Real > &v, Real t=Real(1), bool printToStream=true, std::ostream &outStream=std::cout, int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference proximity operator Jacobian-applied-to-vector check. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Attributes

Ptr
< AugmentedLagrangianObjective
< Real > > 
alobj_
 
Ptr< Vector< Real > > e_
 
Ptr< Vector< Real > > tmp_
 
Real sigma_
 
Real cscale_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Objective< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<typename Real>
class ROL::ElasticObjective< Real >

Provides the interface to evaluate the elastic augmented Lagrangian.

This class implements the elastic augmented Lagrangian functional for use with ROL::StablizedLCLAlgorithm. Given a function \(f:\mathcal{X}\to\mathbb{R}\) and an equality constraint \(c:\mathcal{X}\to\mathcal{C}\), the augmented Lagrangian functional is

\[ L_A(x,\lambda,\mu) = f(x) + \langle \lambda, c(x)\rangle_{\mathcal{C}^*,\mathcal{C}} + \frac{\mu}{2} \langle \mathfrak{R}c(x),c(x)\rangle_{\mathcal{C}^*,\mathcal{C}} + \sigma\langle \mathfrak{R} e, u-v\ranlge_{\mathcal{C}^*,\mathcal{C}} \]

where \(\lambda\in\mathcal{C}^*\) denotes the Lagrange multiplier estimate, \(\mu > 0\) and \(\sigma>0\) are penalty parameters, \(e\in\mathcal{C}\) is the constant one vector, and \(\mathfrak{R}\in\mathcal{L}(\mathcal{C},\mathcal{C}^*)\) is the Riesz operator on the constraint space.

This implementation permits the scaling of \(L_A\) by \(\mu^{-1}\) and also permits the Hessian approximation

\[ \nabla^2_x L_A(x,\lambda,\mu)v \approx \nabla^2 f(x) v + \mu c'(x)^*\mathfrak{R} c'(x)v. \]


Definition at line 49 of file ROL_ElasticObjective.hpp.

Constructor & Destructor Documentation

template<typename Real >
ROL::ElasticObjective< Real >::ElasticObjective ( const Ptr< Objective< Real >> &  obj,
const Ptr< Constraint< Real >> &  con,
const Real  penaltyParameter,
const Real  sigma,
const Vector< Real > &  dualOptVec,
const Vector< Real > &  primConVec,
const Vector< Real > &  dualConVec,
ParameterList &  parlist 
)
template<typename Real >
ROL::ElasticObjective< Real >::ElasticObjective ( const Ptr< Objective< Real >> &  obj,
const Ptr< Constraint< Real >> &  con,
const Real  penaltyParameter,
const Real  sigma,
const Vector< Real > &  dualOptVec,
const Vector< Real > &  primConVec,
const Vector< Real > &  dualConVec,
const bool  scaleLagrangian,
const int  HessianApprox 
)

Member Function Documentation

template<typename Real >
void ROL::ElasticObjective< Real >::update ( const Vector< Real > &  x,
UpdateType  type,
int  iter = -1 
)
overridevirtual

Update objective function.

This function updates the objective function at new iterations.

Parameters
[in]xis the new iterate.
[in]typeis the type of update requested.
[in]iteris the outer algorithm iterations count.

Reimplemented from ROL::Objective< Real >.

Definition at line 48 of file ROL_ElasticObjective_Def.hpp.

template<typename Real >
Real ROL::ElasticObjective< Real >::value ( const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Compute value.

This function returns the objective function value.

Parameters
[in]xis the current iterate.
[in]tolis a tolerance for inexact objective function computation.

Implements ROL::Objective< Real >.

Definition at line 60 of file ROL_ElasticObjective_Def.hpp.

template<typename Real >
void ROL::ElasticObjective< Real >::gradient ( Vector< Real > &  g,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Compute gradient.

This function returns the objective function gradient.

Parameters
[out]gis the gradient.
[in]xis the current iterate.
[in]tolis a tolerance for inexact objective function computation.

The default implementation is a finite-difference approximation based on the function value. This requires the definition of a basis \(\{\phi_i\}\) for the optimization vectors x and the definition of a basis \(\{\psi_j\}\) for the dual optimization vectors (gradient vectors g). The bases must be related through the Riesz map, i.e., \( R \{\phi_i\} = \{\psi_j\}\), and this must be reflected in the implementation of the ROL::Vector::dual() method.

Reimplemented from ROL::Objective< Real >.

Definition at line 71 of file ROL_ElasticObjective_Def.hpp.

template<typename Real >
void ROL::ElasticObjective< Real >::hessVec ( Vector< Real > &  hv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply Hessian approximation to vector.

This function applies the Hessian of the objective function to the vector \(v\).

Parameters
[out]hvis the the action of the Hessian on \(v\).
[in]vis the direction vector.
[in]xis the current iterate.
[in]tolis a tolerance for inexact objective function computation.

Reimplemented from ROL::Objective< Real >.

Definition at line 82 of file ROL_ElasticObjective_Def.hpp.

template<typename Real >
void ROL::ElasticObjective< Real >::setScaling ( const Real  fscale = 1.0,
const Real  cscale = 1.0 
)
template<typename Real >
Real ROL::ElasticObjective< Real >::getObjectiveValue ( const Vector< Real > &  x,
Real &  tol 
)
template<typename Real >
const Ptr< const Vector< Real > > ROL::ElasticObjective< Real >::getObjectiveGradient ( const Vector< Real > &  x,
Real &  tol 
)
template<typename Real >
const Ptr< const Vector< Real > > ROL::ElasticObjective< Real >::getConstraintVec ( const Vector< Real > &  x,
Real &  tol 
)
template<typename Real >
int ROL::ElasticObjective< Real >::getNumberConstraintEvaluations ( void  ) const
template<typename Real >
int ROL::ElasticObjective< Real >::getNumberFunctionEvaluations ( void  ) const
template<typename Real >
int ROL::ElasticObjective< Real >::getNumberGradientEvaluations ( void  ) const
template<typename Real >
void ROL::ElasticObjective< Real >::reset ( const Vector< Real > &  multiplier,
Real  penaltyParameter,
Real  sigma 
)
template<typename Real >
const Ptr< AugmentedLagrangianObjective< Real > > ROL::ElasticObjective< Real >::getAugmentedLagrangian ( void  ) const

Member Data Documentation

template<typename Real>
Ptr<AugmentedLagrangianObjective<Real> > ROL::ElasticObjective< Real >::alobj_
private
template<typename Real>
Ptr<Vector<Real> > ROL::ElasticObjective< Real >::e_
private
template<typename Real>
Ptr<Vector<Real> > ROL::ElasticObjective< Real >::tmp_
private
template<typename Real>
Real ROL::ElasticObjective< Real >::sigma_
private

Definition at line 54 of file ROL_ElasticObjective.hpp.

template<typename Real>
Real ROL::ElasticObjective< Real >::cscale_
private

Definition at line 54 of file ROL_ElasticObjective.hpp.


The documentation for this class was generated from the following files: