ROL
|
Provides the interface to evaluate the elastic augmented Lagrangian. More...
#include <ROL_ElasticObjective.hpp>
Public Member Functions | |
ElasticObjective (const Ptr< Objective< Real >> &obj, const Ptr< Constraint< Real >> &con, const Real penaltyParameter, const Real sigma, const Vector< Real > &dualOptVec, const Vector< Real > &primConVec, const Vector< Real > &dualConVec, ParameterList &parlist) | |
ElasticObjective (const Ptr< Objective< Real >> &obj, const Ptr< Constraint< Real >> &con, const Real penaltyParameter, const Real sigma, const Vector< Real > &dualOptVec, const Vector< Real > &primConVec, const Vector< Real > &dualConVec, const bool scaleLagrangian, const int HessianApprox) | |
void | update (const Vector< Real > &x, UpdateType type, int iter=-1) override |
Update objective function. More... | |
Real | value (const Vector< Real > &x, Real &tol) override |
Compute value. More... | |
void | gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol) override |
Compute gradient. More... | |
void | hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override |
Apply Hessian approximation to vector. More... | |
void | setScaling (const Real fscale=1.0, const Real cscale=1.0) |
Real | getObjectiveValue (const Vector< Real > &x, Real &tol) |
const Ptr< const Vector< Real > > | getObjectiveGradient (const Vector< Real > &x, Real &tol) |
const Ptr< const Vector< Real > > | getConstraintVec (const Vector< Real > &x, Real &tol) |
int | getNumberConstraintEvaluations (void) const |
int | getNumberFunctionEvaluations (void) const |
int | getNumberGradientEvaluations (void) const |
void | reset (const Vector< Real > &multiplier, Real penaltyParameter, Real sigma) |
const Ptr < AugmentedLagrangianObjective < Real > > | getAugmentedLagrangian (void) const |
Public Member Functions inherited from ROL::Objective< Real > | |
virtual | ~Objective () |
Objective () | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update objective function. More... | |
virtual Real | dirDeriv (const Vector< Real > &x, const Vector< Real > &d, Real &tol) |
Compute directional derivative. More... | |
virtual void | invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply inverse Hessian approximation to vector. More... | |
virtual void | precond (Vector< Real > &Pv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply preconditioner to vector. More... | |
virtual void | prox (Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol) |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference gradient check. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference gradient check. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference gradient check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference gradient check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference Hessian-applied-to-vector check. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference Hessian-applied-to-vector check. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference Hessian-applied-to-vector check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference Hessian-applied-to-vector check with specified step sizes. More... | |
virtual std::vector< Real > | checkHessSym (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout) |
Hessian symmetry check. More... | |
virtual std::vector< Real > | checkHessSym (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout) |
Hessian symmetry check. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Attributes | |
Ptr < AugmentedLagrangianObjective < Real > > | alobj_ |
Ptr< Vector< Real > > | e_ |
Ptr< Vector< Real > > | tmp_ |
Real | sigma_ |
Real | cscale_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Objective< Real > | |
const std::vector< Real > | getParameter (void) const |
Provides the interface to evaluate the elastic augmented Lagrangian.
This class implements the elastic augmented Lagrangian functional for use with ROL::StablizedLCLAlgorithm. Given a function \(f:\mathcal{X}\to\mathbb{R}\) and an equality constraint \(c:\mathcal{X}\to\mathcal{C}\), the augmented Lagrangian functional is
\[ L_A(x,\lambda,\mu) = f(x) + \langle \lambda, c(x)\rangle_{\mathcal{C}^*,\mathcal{C}} + \frac{\mu}{2} \langle \mathfrak{R}c(x),c(x)\rangle_{\mathcal{C}^*,\mathcal{C}} + \sigma\langle \mathfrak{R} e, u-v\ranlge_{\mathcal{C}^*,\mathcal{C}} \]
where \(\lambda\in\mathcal{C}^*\) denotes the Lagrange multiplier estimate, \(\mu > 0\) and \(\sigma>0\) are penalty parameters, \(e\in\mathcal{C}\) is the constant one vector, and \(\mathfrak{R}\in\mathcal{L}(\mathcal{C},\mathcal{C}^*)\) is the Riesz operator on the constraint space.
This implementation permits the scaling of \(L_A\) by \(\mu^{-1}\) and also permits the Hessian approximation
\[ \nabla^2_x L_A(x,\lambda,\mu)v \approx \nabla^2 f(x) v + \mu c'(x)^*\mathfrak{R} c'(x)v. \]
Definition at line 49 of file ROL_ElasticObjective.hpp.
ROL::ElasticObjective< Real >::ElasticObjective | ( | const Ptr< Objective< Real >> & | obj, |
const Ptr< Constraint< Real >> & | con, | ||
const Real | penaltyParameter, | ||
const Real | sigma, | ||
const Vector< Real > & | dualOptVec, | ||
const Vector< Real > & | primConVec, | ||
const Vector< Real > & | dualConVec, | ||
ParameterList & | parlist | ||
) |
Definition at line 17 of file ROL_ElasticObjective_Def.hpp.
References ROL::ElasticObjective< Real >::alobj_, ROL::ElasticObjective< Real >::e_, and ROL::ElasticObjective< Real >::tmp_.
ROL::ElasticObjective< Real >::ElasticObjective | ( | const Ptr< Objective< Real >> & | obj, |
const Ptr< Constraint< Real >> & | con, | ||
const Real | penaltyParameter, | ||
const Real | sigma, | ||
const Vector< Real > & | dualOptVec, | ||
const Vector< Real > & | primConVec, | ||
const Vector< Real > & | dualConVec, | ||
const bool | scaleLagrangian, | ||
const int | HessianApprox | ||
) |
Definition at line 32 of file ROL_ElasticObjective_Def.hpp.
References ROL::ElasticObjective< Real >::alobj_, ROL::ElasticObjective< Real >::e_, and ROL::ElasticObjective< Real >::tmp_.
|
overridevirtual |
Update objective function.
This function updates the objective function at new iterations.
[in] | x | is the new iterate. |
[in] | type | is the type of update requested. |
[in] | iter | is the outer algorithm iterations count. |
Reimplemented from ROL::Objective< Real >.
Definition at line 48 of file ROL_ElasticObjective_Def.hpp.
|
overridevirtual |
Compute value.
This function returns the objective function value.
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
Implements ROL::Objective< Real >.
Definition at line 60 of file ROL_ElasticObjective_Def.hpp.
|
overridevirtual |
Compute gradient.
This function returns the objective function gradient.
[out] | g | is the gradient. |
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
The default implementation is a finite-difference approximation based on the function value. This requires the definition of a basis \(\{\phi_i\}\) for the optimization vectors x and the definition of a basis \(\{\psi_j\}\) for the dual optimization vectors (gradient vectors g). The bases must be related through the Riesz map, i.e., \( R \{\phi_i\} = \{\psi_j\}\), and this must be reflected in the implementation of the ROL::Vector::dual() method.
Reimplemented from ROL::Objective< Real >.
Definition at line 71 of file ROL_ElasticObjective_Def.hpp.
|
overridevirtual |
Apply Hessian approximation to vector.
This function applies the Hessian of the objective function to the vector \(v\).
[out] | hv | is the the action of the Hessian on \(v\). |
[in] | v | is the direction vector. |
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
Reimplemented from ROL::Objective< Real >.
Definition at line 82 of file ROL_ElasticObjective_Def.hpp.
void ROL::ElasticObjective< Real >::setScaling | ( | const Real | fscale = 1.0 , |
const Real | cscale = 1.0 |
||
) |
Definition at line 54 of file ROL_ElasticObjective_Def.hpp.
Referenced by ROL::TypeE::StabilizedLCLAlgorithm< Real >::initialize(), and ROL::TypeG::StabilizedLCLAlgorithm< Real >::initialize().
Real ROL::ElasticObjective< Real >::getObjectiveValue | ( | const Vector< Real > & | x, |
Real & | tol | ||
) |
const Ptr< const Vector< Real > > ROL::ElasticObjective< Real >::getObjectiveGradient | ( | const Vector< Real > & | x, |
Real & | tol | ||
) |
Definition at line 99 of file ROL_ElasticObjective_Def.hpp.
Referenced by ROL::TypeE::StabilizedLCLAlgorithm< Real >::initialize(), and ROL::TypeG::StabilizedLCLAlgorithm< Real >::initialize().
const Ptr< const Vector< Real > > ROL::ElasticObjective< Real >::getConstraintVec | ( | const Vector< Real > & | x, |
Real & | tol | ||
) |
int ROL::ElasticObjective< Real >::getNumberConstraintEvaluations | ( | void | ) | const |
int ROL::ElasticObjective< Real >::getNumberFunctionEvaluations | ( | void | ) | const |
int ROL::ElasticObjective< Real >::getNumberGradientEvaluations | ( | void | ) | const |
void ROL::ElasticObjective< Real >::reset | ( | const Vector< Real > & | multiplier, |
Real | penaltyParameter, | ||
Real | sigma | ||
) |
const Ptr< AugmentedLagrangianObjective< Real > > ROL::ElasticObjective< Real >::getAugmentedLagrangian | ( | void | ) | const |
|
private |
Definition at line 52 of file ROL_ElasticObjective.hpp.
Referenced by ROL::ElasticObjective< Real >::ElasticObjective().
|
private |
Definition at line 53 of file ROL_ElasticObjective.hpp.
Referenced by ROL::ElasticObjective< Real >::ElasticObjective().
|
private |
Definition at line 53 of file ROL_ElasticObjective.hpp.
Referenced by ROL::ElasticObjective< Real >::ElasticObjective().
|
private |
Definition at line 54 of file ROL_ElasticObjective.hpp.
|
private |
Definition at line 54 of file ROL_ElasticObjective.hpp.