|
ROL
|
#include <Lagrange.hpp>
Public Member Functions | |
| Lagrange (const std::vector< Real > &xin, const std::vector< Real > &xev) | |
| Interpolation object which interpolates from to the grid xin to xev. More... | |
| ~Lagrange () | |
| void | interp (const std::vector< Real > &f, std::vector< Real > &p) |
| Given the values of a function on the interpolation points xin, stored in f, evaluate the interpolating polynomial on the evaluation points xev. More... | |
| void | dinterp (const std::vector< Real > &f, std::vector< Real > &p) |
| void | interpolant (const int k, std::vector< Real > &l) |
| Evaluate the kth interpolant on the evaluation points. More... | |
| void | derivative (const int k, std::vector< Real > &d) |
| Derivative of the \(k\)th interpolant on the interpolation points. More... | |
| void | bi_sum (const std::vector< Real > &f, std::vector< Real > &y) |
| This routine evaluates sums of the form shown in equation (4.2) in the paper by J-P Berrut and L.N. Trefethen. More... | |
Private Attributes | |
| const std::vector< Real > | xin_ |
| const std::vector< Real > | xev_ |
| const int | nin_ |
| const int | nev_ |
| std::vector< Real > | w_ |
| std::vector< Real > | ell_ |
| std::vector< Real > | D_ |
Definition at line 16 of file Lagrange.hpp.
| Lagrange< Real >::Lagrange | ( | const std::vector< Real > & | xin, |
| const std::vector< Real > & | xev | ||
| ) |
Interpolation object which interpolates from to the grid xin to xev.
| [in] | xin | vector of interpolation points |
| [in] | xev | vector of evaluation points |
Definition at line 66 of file Lagrange.hpp.
References Lagrange< Real >::bi_sum(), Lagrange< Real >::D_, Lagrange< Real >::ell_, Lagrange< Real >::nev_, Lagrange< Real >::nin_, Lagrange< Real >::w_, and Lagrange< Real >::xin_.
Definition at line 124 of file Lagrange.hpp.
| void Lagrange< Real >::interp | ( | const std::vector< Real > & | f, |
| std::vector< Real > & | p | ||
| ) |
Given the values of a function on the interpolation points xin, stored in f, evaluate the interpolating polynomial on the evaluation points xev.
| [in] | f | vector of function values sampled at xin |
| [out] | y | vector of interpolating polynomial values evaluated ay xev |
Definition at line 156 of file Lagrange.hpp.
| void Lagrange< Real >::dinterp | ( | const std::vector< Real > & | f, |
| std::vector< Real > & | p | ||
| ) |
Definition at line 166 of file Lagrange.hpp.
| void Lagrange< Real >::interpolant | ( | const int | k, |
| std::vector< Real > & | l | ||
| ) |
Evaluate the kth interpolant on the evaluation points.
| [in] | k | vector of function values sampled at xin |
| [out] | y | vector of interpolating polynomial values evaluated ay xev |
Definition at line 185 of file Lagrange.hpp.
| void Lagrange< Real >::derivative | ( | const int | k, |
| std::vector< Real > & | d | ||
| ) |
Derivative of the \(k\)th interpolant on the interpolation points.
Definition at line 200 of file Lagrange.hpp.
References D_.
| void Lagrange< Real >::bi_sum | ( | const std::vector< Real > & | f, |
| std::vector< Real > & | y | ||
| ) |
This routine evaluates sums of the form shown in equation (4.2) in the paper by J-P Berrut and L.N. Trefethen.
| [in] | f | vector of values appearing in the sum |
| [out] | y | the result |
Definition at line 131 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
| xin_ | Vector of interpolation points |
Definition at line 39 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
Definition at line 42 of file Lagrange.hpp.
|
private |
Definition at line 45 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
Definition at line 48 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
Definition at line 51 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
Definition at line 54 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
|
private |
Definition at line 57 of file Lagrange.hpp.
Referenced by Lagrange< Real >::Lagrange().
1.8.5