ROL
Public Member Functions | List of all members
ROL::Chi2Divergence< Real > Class Template Reference

Provides an interface for the chi-squared-divergence distributionally robust expectation. More...

#include <ROL_Chi2Divergence.hpp>

+ Inheritance diagram for ROL::Chi2Divergence< Real >:

Public Member Functions

 Chi2Divergence (const Real thresh)
 Constructor. More...
 
 Chi2Divergence (ROL::ParameterList &parlist)
 Constructor. More...
 
Real Fprimal (Real x, int deriv=0) const
 Implementation of the scalar primal F function. More...
 
Real Fdual (Real x, int deriv=0) const
 Implementation of the scalar dual F function. More...
 
- Public Member Functions inherited from ROL::FDivergence< Real >
 FDivergence (const Real thresh)
 Constructor. More...
 
 FDivergence (ROL::ParameterList &parlist)
 Constructor. More...
 
bool check (std::ostream &outStream=std::cout) const
 
void initialize (const Vector< Real > &x)
 Initialize temporary variables. More...
 
void updateValue (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal storage for value computation. More...
 
Real getValue (const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure value. More...
 
void updateGradient (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for gradient computation. More...
 
void getGradient (Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure (sub)gradient. More...
 
void updateHessVec (Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for Hessian-time-a-vector computation. More...
 
void getHessVec (Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure Hessian-times-a-vector. More...
 
- Public Member Functions inherited from ROL::RandVarFunctional< Real >
virtual ~RandVarFunctional ()
 
 RandVarFunctional (void)
 
 weight_ (0)
 
void useStorage (bool storage)
 
void useHessVecStorage (bool storage)
 
virtual void setStorage (const Ptr< ScalarController< Real >> &value_storage, const Ptr< VectorController< Real >> &gradient_storage)
 
virtual void setHessVecStorage (const Ptr< ScalarController< Real >> &gradvec_storage, const Ptr< VectorController< Real >> &hessvec_storage)
 
virtual void resetStorage (bool flag=true)
 Reset internal storage. More...
 
virtual void resetStorage (UpdateType type)
 
virtual void setSample (const std::vector< Real > &point, const Real weight)
 
virtual Real computeStatistic (const Ptr< const std::vector< Real >> &xstat) const
 Compute statistic. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::RandVarFunctional< Real >
Real computeValue (Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
void computeGradient (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
Real computeGradVec (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
void computeHessVec (Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
- Protected Attributes inherited from ROL::RandVarFunctional< Real >
Real val_
 
Real gv_
 
Ptr< Vector< Real > > g_
 
Ptr< Vector< Real > > hv_
 
Ptr< Vector< Real > > dualVector_
 
bool firstReset_
 
std::vector< Real > point_
 
Real weight_
 

Detailed Description

template<class Real>
class ROL::Chi2Divergence< Real >

Provides an interface for the chi-squared-divergence distributionally robust expectation.

This class defines a risk measure \(\mathcal{R}\) that arises in distributionally robust stochastic programming. \(\mathcal{R}\) is given by

\[ \mathcal{R}(X) = \sup_{\vartheta\in\mathfrak{A}} \mathbb{E}[\vartheta X] \]

where \(\mathfrak{A}\) is called the ambiguity (or uncertainty) set and is defined by a constraint on the \(\chi^2\)-divergence, i.e.,

\[ \mathfrak{A} = \left\{\vartheta\in\mathcal{X}^*\,:\, \mathbb{E}[\vartheta] = 1,\; \vartheta \ge 0,\;\text{and}\; \frac{1}{2}\mathbb{E}[(\vartheta-1)^2] \le \epsilon\right\}. \]

\(\mathcal{R}\) is a law-invariant, coherent risk measure.

Definition at line 39 of file ROL_Chi2Divergence.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::Chi2Divergence< Real >::Chi2Divergence ( const Real  thresh)
inline

Constructor.

Parameters
[in]threshis the tolerance for the F-divergence constraint

Definition at line 46 of file ROL_Chi2Divergence.hpp.

template<class Real >
ROL::Chi2Divergence< Real >::Chi2Divergence ( ROL::ParameterList &  parlist)
inline

Constructor.

Parameters
[in]parlistis a parameter list specifying inputs

parlist should contain sublists "SOL"->"Risk Measure"->"F-Divergence" and within the "F-Divergence" sublist should have the following parameters

  • "Threshold" (greater than 0)

Definition at line 56 of file ROL_Chi2Divergence.hpp.

Member Function Documentation

template<class Real >
Real ROL::Chi2Divergence< Real >::Fprimal ( Real  x,
int  deriv = 0 
) const
inlinevirtual

Implementation of the scalar primal F function.

Parameters
[in]xis a scalar input
[in]derivis the derivative order

Upon return, Fprimal returns \(F(x)\) or a derivative of \(F(x)\).

Implements ROL::FDivergence< Real >.

Definition at line 58 of file ROL_Chi2Divergence.hpp.

References zero.

template<class Real >
Real ROL::Chi2Divergence< Real >::Fdual ( Real  x,
int  deriv = 0 
) const
inlinevirtual

Implementation of the scalar dual F function.

Parameters
[in]xis a scalar input
[in]derivis the derivative order

Upon return, Fdual returns \(F^*(x)\) or a derivative of \(F^*(x)\). Here, \(F^*\) denotes the Legendre-Fenchel transformation of \(F\), i.e.,

\[ F^*(y) = \sup_{x\in\mathbb{R}}\{xy - F(x)\}. \]

Implements ROL::FDivergence< Real >.

Definition at line 76 of file ROL_Chi2Divergence.hpp.

References zero.


The documentation for this class was generated from the following file: