ROL
|
#include <example_02.hpp>
Public Member Functions | |
OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
void | plus (const ROL::Vector< Real > &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More... | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More... | |
Real | dot (const ROL::Vector< Real > &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More... | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). More... | |
ROL::Ptr< ROL::Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. More... | |
ROL::Ptr< const std::vector < Element > > | getVector () const |
ROL::Ptr< std::vector< Element > > | getVector () |
ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const |
Return i-th basis vector. More... | |
int | dimension () const |
Return dimension of the vector space. More... | |
const ROL::Vector< Real > & | dual () const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More... | |
Real | apply (const ROL::Vector< Real > &x) const |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More... | |
OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
void | plus (const ROL::Vector< Real > &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More... | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More... | |
Real | dot (const ROL::Vector< Real > &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More... | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). More... | |
ROL::Ptr< ROL::Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. More... | |
ROL::Ptr< const std::vector < Element > > | getVector () const |
ROL::Ptr< std::vector< Element > > | getVector () |
ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const |
Return i-th basis vector. More... | |
int | dimension () const |
Return dimension of the vector space. More... | |
const ROL::Vector< Real > & | dual () const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More... | |
Real | apply (const ROL::Vector< Real > &x) const |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More... | |
void | applyUnary (const ROL::Elementwise::UnaryFunction< Real > &f) |
void | applyBinary (const ROL::Elementwise::BinaryFunction< Real > &f, const ROL::Vector< Real > &x) |
Real | reduce (const ROL::Elementwise::ReductionOp< Real > &r) const |
OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
void | plus (const ROL::Vector< Real > &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More... | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More... | |
Real | dot (const ROL::Vector< Real > &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More... | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). More... | |
ROL::Ptr< ROL::Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. More... | |
ROL::Ptr< const std::vector < Element > > | getVector () const |
ROL::Ptr< std::vector< Element > > | getVector () |
ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const |
Return i-th basis vector. More... | |
int | dimension () const |
Return dimension of the vector space. More... | |
const ROL::Vector< Real > & | dual () const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More... | |
Real | apply (const ROL::Vector< Real > &x) const |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More... | |
OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd) | |
void | plus (const Vector< Real > &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More... | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More... | |
Real | dot (const Vector< Real > &x) const |
Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \). More... | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). More... | |
ROL::Ptr< Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. More... | |
ROL::Ptr< const vector > | getVector () const |
ROL::Ptr< vector > | getVector () |
ROL::Ptr< Vector< Real > > | basis (const int i) const |
Return i-th basis vector. More... | |
int | dimension () const |
Return dimension of the vector space. More... | |
const Vector< Real > & | dual () const |
Modify the dual of vector u to be \(\tilde u = -\ddot u\). More... | |
Public Member Functions inherited from ROL::Vector< Real > | |
virtual | ~Vector () |
virtual void | axpy (const Real alpha, const Vector &x) |
Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More... | |
virtual void | zero () |
Set to zero vector. More... | |
virtual void | set (const Vector &x) |
Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More... | |
virtual void | applyUnary (const Elementwise::UnaryFunction< Real > &f) |
virtual void | applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x) |
virtual Real | reduce (const Elementwise::ReductionOp< Real > &r) const |
virtual void | print (std::ostream &outStream) const |
virtual void | setScalar (const Real C) |
Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More... | |
virtual void | randomize (const Real l=0.0, const Real u=1.0) |
Set vector to be uniform random between [l,u]. More... | |
virtual std::vector< Real > | checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const |
Verify vector-space methods. More... | |
Private Types | |
typedef std::vector< Element > | vector |
typedef ROL::Vector< Real > | V |
typedef vector::size_type | uint |
typedef std::vector< Element > | vector |
typedef ROL::Vector< Real > | V |
typedef vector::size_type | uint |
typedef std::vector< Element > | vector |
typedef ROL::Vector< Real > | V |
typedef vector::size_type | uint |
typedef std::vector< Element > | vector |
typedef vector::size_type | uint |
Private Attributes | |
ROL::Ptr< std::vector< Element > > | std_vec_ |
ROL::Ptr< OptDualStdVector < Real > > | dual_vec_ |
ROL::Ptr< FiniteDifference < Real > > | fd_ |
Definition at line 30 of file dual-spaces/rosenbrock-1/example_01.cpp.
|
private |
Definition at line 42 of file dual-spaces/rosenbrock-1/example_01.cpp.
|
private |
Definition at line 43 of file dual-spaces/rosenbrock-1/example_01.cpp.
|
private |
Definition at line 45 of file dual-spaces/rosenbrock-1/example_01.cpp.
|
private |
Definition at line 43 of file dual-spaces/rosenbrock-1/example_02.cpp.
|
private |
Definition at line 44 of file dual-spaces/rosenbrock-1/example_02.cpp.
|
private |
Definition at line 46 of file dual-spaces/rosenbrock-1/example_02.cpp.
|
private |
Definition at line 47 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
|
private |
Definition at line 48 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
|
private |
Definition at line 49 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
|
private |
Definition at line 85 of file gross-pitaevskii/example_02.hpp.
|
private |
Definition at line 86 of file gross-pitaevskii/example_02.hpp.
|
inline |
Definition at line 53 of file dual-spaces/rosenbrock-1/example_01.cpp.
|
inline |
Definition at line 54 of file dual-spaces/rosenbrock-1/example_02.cpp.
|
inline |
Definition at line 57 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
|
inline |
Definition at line 97 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
[in] | x | is the vector to be added to \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 55 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 64 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
[in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). |
Implements ROL::Vector< Real >.
Definition at line 71 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
Referenced by OptStdVector< Real, Element >::norm().
|
inlinevirtual |
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 82 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dot().
Referenced by main().
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 88 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 92 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
Referenced by OptStdVector< Real, Element >::apply(), OptStdVector< Real, Element >::applyBinary(), OptStdVector< Real, Element >::dot(), and OptStdVector< Real, Element >::plus().
|
inline |
Definition at line 96 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return i-th basis vector.
[in] | i | is the index of the basis function. |
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 100 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 110 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
Referenced by OptStdVector< Real, Element >::apply(), OptStdVector< Real, Element >::dot(), OptStdVector< Real, Element >::plus(), and OptStdVector< Real, Element >::scale().
|
inlinevirtual |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 112 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dual_vec_.
|
inlinevirtual |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
[in] | x | is a vector |
Reimplemented from ROL::Vector< Real >.
Definition at line 117 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
[in] | x | is the vector to be added to \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 56 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 65 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
[in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). |
Implements ROL::Vector< Real >.
Definition at line 72 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 83 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dot().
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 89 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 93 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 97 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return i-th basis vector.
[in] | i | is the index of the basis function. |
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 101 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 111 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 113 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dual_vec_.
|
inlinevirtual |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
[in] | x | is a vector |
Reimplemented from ROL::Vector< Real >.
Definition at line 118 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 129 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 133 of file dual-spaces/rosenbrock-1/example_02.cpp.
References dim, OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 141 of file dual-spaces/rosenbrock-1/example_02.cpp.
References dim, and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
[in] | x | is the vector to be added to \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 59 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 70 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
[in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). |
Implements ROL::Vector< Real >.
Definition at line 77 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 91 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dot().
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 97 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 101 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inline |
Definition at line 105 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return i-th basis vector.
[in] | i | is the index of the basis function. |
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 109 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 117 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 119 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dual_vec_.
|
inlinevirtual |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
[in] | x | is a vector |
Reimplemented from ROL::Vector< Real >.
Definition at line 124 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.
|
inlinevirtual |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
[in] | x | is the vector to be added to \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 100 of file gross-pitaevskii/example_02.hpp.
References OptStdVector< Real, Element >::getVector().
|
inlinevirtual |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 109 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \).
Implements ROL::Vector< Real >.
Definition at line 118 of file gross-pitaevskii/example_02.hpp.
References OptStdVector< Real, Element >::getVector().
|
inlinevirtual |
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 134 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 140 of file gross-pitaevskii/example_02.hpp.
|
inline |
Definition at line 144 of file gross-pitaevskii/example_02.hpp.
|
inline |
Definition at line 148 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Return i-th basis vector.
[in] | i | is the index of the basis function. |
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 152 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 159 of file gross-pitaevskii/example_02.hpp.
|
inlinevirtual |
Modify the dual of vector u to be \(\tilde u = -\ddot u\).
Reimplemented from ROL::Vector< Real >.
Definition at line 163 of file gross-pitaevskii/example_02.hpp.
|
private |
Definition at line 48 of file dual-spaces/rosenbrock-1/example_01.cpp.
Referenced by OptStdVector< Real, Element >::apply(), OptStdVector< Real, Element >::applyBinary(), OptStdVector< Real, Element >::applyUnary(), OptStdVector< Real, Element >::basis(), OptStdVector< Real, Element >::clone(), OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::dot(), OptStdVector< Real, Element >::getVector(), OptStdVector< Real, Element >::plus(), OptStdVector< Real, Element >::reduce(), and OptStdVector< Real, Element >::scale().
|
mutableprivate |
Definition at line 49 of file dual-spaces/rosenbrock-1/example_01.cpp.
Referenced by OptStdVector< Real, Element >::dual().
|
private |
Definition at line 92 of file gross-pitaevskii/example_02.hpp.