ROL
Public Member Functions | Private Types | Private Attributes | List of all members
OptStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptStdVector< Real, Element >:

Public Member Functions

 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
void applyUnary (const ROL::Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const ROL::Elementwise::BinaryFunction< Real > &f, const ROL::Vector< Real > &x)
 
Real reduce (const ROL::Elementwise::ReductionOp< Real > &r) const
 
 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
 OptStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const vectorgetVector () const
 
ROL::Ptr< vectorgetVector ()
 
ROL::Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Modify the dual of vector u to be \(\tilde u = -\ddot u\). More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More...
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u]. More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Types

typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef vector::size_type uint
 

Private Attributes

ROL::Ptr< std::vector< Element > > std_vec_
 
ROL::Ptr< OptDualStdVector
< Real > > 
dual_vec_
 
ROL::Ptr< FiniteDifference
< Real > > 
fd_
 

Detailed Description

template<class Real, class Element = Real>
class OptStdVector< Real, Element >

Definition at line 30 of file dual-spaces/rosenbrock-1/example_01.cpp.

Member Typedef Documentation

template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private

Definition at line 42 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptStdVector< Real, Element >::V
private

Definition at line 43 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private

Definition at line 45 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private

Definition at line 43 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptStdVector< Real, Element >::V
private

Definition at line 44 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private

Definition at line 46 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private
template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptStdVector< Real, Element >::V
private
template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private
template<class Real, class Element = Real>
typedef std::vector<Element> OptStdVector< Real, Element >::vector
private

Definition at line 85 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
typedef vector::size_type OptStdVector< Real, Element >::uint
private

Definition at line 86 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 53 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 54 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec,
ROL::Ptr< FiniteDifference< Real > >  fd 
)
inline

Definition at line 97 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 55 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 64 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 71 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 82 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

Referenced by main().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 88 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 100 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 110 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::apply(), OptStdVector< Real, Element >::dot(), OptStdVector< Real, Element >::plus(), and OptStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 112 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 117 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 56 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 65 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 72 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 83 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 89 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 101 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 111 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 113 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 118 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::applyUnary ( const ROL::Elementwise::UnaryFunction< Real > &  f)
inline
template<class Real, class Element = Real>
void OptStdVector< Real, Element >::applyBinary ( const ROL::Elementwise::BinaryFunction< Real > &  f,
const ROL::Vector< Real > &  x 
)
inline
template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::reduce ( const ROL::Elementwise::ReductionOp< Real > &  r) const
inline
template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 59 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 70 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 77 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 91 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 97 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 109 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 117 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 119 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 124 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 100 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 109 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \).

Implements ROL::Vector< Real >.

Definition at line 118 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 134 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 140 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<const vector> OptStdVector< Real, Element >::getVector ( void  ) const
inline

Definition at line 144 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<vector> OptStdVector< Real, Element >::getVector ( void  )
inline

Definition at line 148 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 152 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 159 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Modify the dual of vector u to be \(\tilde u = -\ddot u\).

Reimplemented from ROL::Vector< Real >.

Definition at line 163 of file gross-pitaevskii/example_02.hpp.

Member Data Documentation

template<class Real, class Element = Real>
ROL::Ptr< std::vector< Element > > OptStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
ROL::Ptr< OptDualStdVector< Real > > OptStdVector< Real, Element >::dual_vec_
mutableprivate
template<class Real, class Element = Real>
ROL::Ptr<FiniteDifference<Real> > OptStdVector< Real, Element >::fd_
private

Definition at line 92 of file gross-pitaevskii/example_02.hpp.


The documentation for this class was generated from the following files: