| 
    ROL
    
   | 
 
#include <example_02.hpp>
 Inheritance diagram for OptDualStdVector< Real, Element >:Public Member Functions | |
| OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
| void | plus (const ROL::Vector< Real > &x) | 
| Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).  More... | |
| void | scale (const Real alpha) | 
| Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).  More... | |
| Real | dot (const ROL::Vector< Real > &x) const | 
| Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).  More... | |
| Real | norm () const | 
| Returns \( \| y \| \) where \(y = \mathtt{*this}\).  More... | |
| ROL::Ptr< ROL::Vector< Real > > | clone () const | 
| Clone to make a new (uninitialized) vector.  More... | |
| ROL::Ptr< const std::vector < Element > >  | getVector () const | 
| ROL::Ptr< std::vector< Element > > | getVector () | 
| ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const | 
| Return i-th basis vector.  More... | |
| int | dimension () const | 
| Return dimension of the vector space.  More... | |
| const ROL::Vector< Real > & | dual () const | 
| Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.  More... | |
| Real | apply (const ROL::Vector< Real > &x) const | 
| Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).  More... | |
| OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
| void | plus (const ROL::Vector< Real > &x) | 
| Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).  More... | |
| void | scale (const Real alpha) | 
| Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).  More... | |
| Real | dot (const ROL::Vector< Real > &x) const | 
| Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).  More... | |
| Real | norm () const | 
| Returns \( \| y \| \) where \(y = \mathtt{*this}\).  More... | |
| ROL::Ptr< ROL::Vector< Real > > | clone () const | 
| Clone to make a new (uninitialized) vector.  More... | |
| ROL::Ptr< const std::vector < Element > >  | getVector () const | 
| ROL::Ptr< std::vector< Element > > | getVector () | 
| ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const | 
| Return i-th basis vector.  More... | |
| int | dimension () const | 
| Return dimension of the vector space.  More... | |
| const ROL::Vector< Real > & | dual () const | 
| Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.  More... | |
| Real | apply (const ROL::Vector< Real > &x) const | 
| Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).  More... | |
| void | applyUnary (const ROL::Elementwise::UnaryFunction< Real > &f) | 
| void | applyBinary (const ROL::Elementwise::BinaryFunction< Real > &f, const ROL::Vector< Real > &x) | 
| Real | reduce (const ROL::Elementwise::ReductionOp< Real > &r) const | 
| OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec) | |
| void | plus (const ROL::Vector< Real > &x) | 
| Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).  More... | |
| void | scale (const Real alpha) | 
| Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).  More... | |
| Real | dot (const ROL::Vector< Real > &x) const | 
| Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).  More... | |
| Real | norm () const | 
| Returns \( \| y \| \) where \(y = \mathtt{*this}\).  More... | |
| ROL::Ptr< ROL::Vector< Real > > | clone () const | 
| Clone to make a new (uninitialized) vector.  More... | |
| ROL::Ptr< const std::vector < Element > >  | getVector () const | 
| ROL::Ptr< std::vector< Element > > | getVector () | 
| ROL::Ptr< ROL::Vector< Real > > | basis (const int i) const | 
| Return i-th basis vector.  More... | |
| int | dimension () const | 
| Return dimension of the vector space.  More... | |
| const ROL::Vector< Real > & | dual () const | 
| Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.  More... | |
| Real | apply (const ROL::Vector< Real > &x) const | 
| Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).  More... | |
| OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd) | |
| void | plus (const Vector< Real > &x) | 
| Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).  More... | |
| void | scale (const Real alpha) | 
| Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).  More... | |
| Real | dot (const Vector< Real > &x) const | 
| Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).  More... | |
| Real | norm () const | 
| Returns \( \| y \| \) where \(y = \mathtt{*this}\).  More... | |
| ROL::Ptr< Vector< Real > > | clone () const | 
| Clone to make a new (uninitialized) vector.  More... | |
| ROL::Ptr< const std::vector < Element > >  | getVector () const | 
| ROL::Ptr< std::vector< Element > > | getVector () | 
| ROL::Ptr< Vector< Real > > | basis (const int i) const | 
| Return i-th basis vector.  More... | |
| int | dimension () const | 
| Return dimension of the vector space.  More... | |
| const Vector< Real > & | dual () const | 
| Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.  More... | |
  Public Member Functions inherited from ROL::Vector< Real > | |
| virtual | ~Vector () | 
| virtual void | axpy (const Real alpha, const Vector &x) | 
| Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).  More... | |
| virtual void | zero () | 
| Set to zero vector.  More... | |
| virtual void | set (const Vector &x) | 
| Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).  More... | |
| virtual void | applyUnary (const Elementwise::UnaryFunction< Real > &f) | 
| virtual void | applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x) | 
| virtual Real | reduce (const Elementwise::ReductionOp< Real > &r) const | 
| virtual void | print (std::ostream &outStream) const | 
| virtual void | setScalar (const Real C) | 
| Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).  More... | |
| virtual void | randomize (const Real l=0.0, const Real u=1.0) | 
| Set vector to be uniform random between [l,u].  More... | |
| virtual std::vector< Real > | checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const | 
| Verify vector-space methods.  More... | |
Private Types | |
| typedef std::vector< Element > | vector | 
| typedef ROL::Vector< Real > | V | 
| typedef vector::size_type | uint | 
| typedef std::vector< Element > | vector | 
| typedef ROL::Vector< Real > | V | 
| typedef vector::size_type | uint | 
| typedef std::vector< Element > | vector | 
| typedef ROL::Vector< Real > | V | 
| typedef vector::size_type | uint | 
| typedef std::vector< Element > | vector | 
| typedef vector::size_type | uint | 
Private Attributes | |
| ROL::Ptr< std::vector< Element > > | std_vec_ | 
| ROL::Ptr< OptStdVector< Real > > | dual_vec_ | 
| ROL::Ptr< FiniteDifference < Real > >  | fd_ | 
Definition at line 33 of file dual-spaces/rosenbrock-1/example_01.cpp.
      
  | 
  private | 
Definition at line 135 of file dual-spaces/rosenbrock-1/example_01.cpp.
      
  | 
  private | 
Definition at line 136 of file dual-spaces/rosenbrock-1/example_01.cpp.
      
  | 
  private | 
Definition at line 138 of file dual-spaces/rosenbrock-1/example_01.cpp.
      
  | 
  private | 
Definition at line 157 of file dual-spaces/rosenbrock-1/example_02.cpp.
      
  | 
  private | 
Definition at line 158 of file dual-spaces/rosenbrock-1/example_02.cpp.
      
  | 
  private | 
Definition at line 160 of file dual-spaces/rosenbrock-1/example_02.cpp.
      
  | 
  private | 
Definition at line 142 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
      
  | 
  private | 
Definition at line 143 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
      
  | 
  private | 
Definition at line 144 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
      
  | 
  private | 
Definition at line 177 of file gross-pitaevskii/example_02.hpp.
      
  | 
  private | 
Definition at line 178 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inline | 
Definition at line 146 of file dual-spaces/rosenbrock-1/example_01.cpp.
      
  | 
  inline | 
Definition at line 168 of file dual-spaces/rosenbrock-1/example_02.cpp.
      
  | 
  inline | 
Definition at line 152 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
      
  | 
  inline | 
Definition at line 187 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
| [in] | x | is the vector to be added to \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 148 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
| [in] | alpha | is the scaling of \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 158 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
| [in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). | 
Implements ROL::Vector< Real >.
Definition at line 165 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
Referenced by OptDualStdVector< Real, Element >::norm().
      
  | 
  inlinevirtual | 
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 176 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dot().
      
  | 
  inlinevirtual | 
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 182 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 186 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
Referenced by OptDualStdVector< Real, Element >::apply(), OptDualStdVector< Real, Element >::applyBinary(), OptDualStdVector< Real, Element >::dot(), and OptDualStdVector< Real, Element >::plus().
      
  | 
  inline | 
Definition at line 190 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return i-th basis vector.
| [in] | i | is the index of the basis function. | 
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 194 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 203 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
Referenced by OptDualStdVector< Real, Element >::apply(), OptDualStdVector< Real, Element >::dot(), OptDualStdVector< Real, Element >::plus(), and OptDualStdVector< Real, Element >::scale().
      
  | 
  inlinevirtual | 
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 205 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dual_vec_.
      
  | 
  inlinevirtual | 
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
| [in] | x | is a vector | 
Reimplemented from ROL::Vector< Real >.
Definition at line 210 of file dual-spaces/rosenbrock-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
| [in] | x | is the vector to be added to \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 170 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
| [in] | alpha | is the scaling of \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 180 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
| [in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). | 
Implements ROL::Vector< Real >.
Definition at line 187 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 198 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dot().
      
  | 
  inlinevirtual | 
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 204 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 208 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 212 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return i-th basis vector.
| [in] | i | is the index of the basis function. | 
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 216 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 225 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 227 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dual_vec_.
      
  | 
  inlinevirtual | 
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
| [in] | x | is a vector | 
Reimplemented from ROL::Vector< Real >.
Definition at line 232 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 243 of file dual-spaces/rosenbrock-1/example_02.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 247 of file dual-spaces/rosenbrock-1/example_02.cpp.
References dim, OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 255 of file dual-spaces/rosenbrock-1/example_02.cpp.
References dim, and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
| [in] | x | is the vector to be added to \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 154 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
| [in] | alpha | is the scaling of \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 163 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
| [in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). | 
Implements ROL::Vector< Real >.
Definition at line 170 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 181 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dot().
      
  | 
  inlinevirtual | 
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 187 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 191 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inline | 
Definition at line 195 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return i-th basis vector.
| [in] | i | is the index of the basis function. | 
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 199 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 207 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 209 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dual_vec_.
      
  | 
  inlinevirtual | 
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
| [in] | x | is a vector | 
Reimplemented from ROL::Vector< Real >.
Definition at line 214 of file dual-spaces/simple-eq-constr-1/example_01.cpp.
References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
| [in] | x | is the vector to be added to \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 190 of file gross-pitaevskii/example_02.hpp.
References OptDualStdVector< Real, Element >::getVector().
      
  | 
  inlinevirtual | 
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
| [in] | alpha | is the scaling of \(\mathtt{*this}\). | 
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 199 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
| [in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). | 
Implements ROL::Vector< Real >.
Definition at line 206 of file gross-pitaevskii/example_02.hpp.
References OptDualStdVector< Real, Element >::getVector().
      
  | 
  inlinevirtual | 
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 220 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 226 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inline | 
Definition at line 230 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inline | 
Definition at line 234 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Return i-th basis vector.
| [in] | i | is the index of the basis function. | 
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 238 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 245 of file gross-pitaevskii/example_02.hpp.
      
  | 
  inlinevirtual | 
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 247 of file gross-pitaevskii/example_02.hpp.
      
  | 
  private | 
Definition at line 141 of file dual-spaces/rosenbrock-1/example_01.cpp.
Referenced by OptDualStdVector< Real, Element >::apply(), OptDualStdVector< Real, Element >::applyBinary(), OptDualStdVector< Real, Element >::applyUnary(), OptDualStdVector< Real, Element >::basis(), OptDualStdVector< Real, Element >::clone(), OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::dot(), OptDualStdVector< Real, Element >::getVector(), OptDualStdVector< Real, Element >::plus(), OptDualStdVector< Real, Element >::reduce(), and OptDualStdVector< Real, Element >::scale().
      
  | 
  mutableprivate | 
Definition at line 142 of file dual-spaces/rosenbrock-1/example_01.cpp.
Referenced by OptDualStdVector< Real, Element >::dual().
      
  | 
  private | 
Definition at line 183 of file gross-pitaevskii/example_02.hpp.
 1.8.5