ROL
Public Member Functions | Private Types | Private Attributes | List of all members
OptDualStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptDualStdVector< Real, Element >:

Public Member Functions

 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
void applyUnary (const ROL::Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const ROL::Elementwise::BinaryFunction< Real > &f, const ROL::Vector< Real > &x)
 
Real reduce (const ROL::Elementwise::ReductionOp< Real > &r) const
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). More...
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
ROL::Ptr< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
ROL::Ptr< const std::vector
< Element > > 
getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). More...
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u]. More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Types

typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef vector::size_type uint
 

Private Attributes

ROL::Ptr< std::vector< Element > > std_vec_
 
ROL::Ptr< OptStdVector< Real > > dual_vec_
 
ROL::Ptr< FiniteDifference
< Real > > 
fd_
 

Detailed Description

template<class Real, class Element = Real>
class OptDualStdVector< Real, Element >

Definition at line 33 of file dual-spaces/rosenbrock-1/example_01.cpp.

Member Typedef Documentation

template<class Real, class Element = Real>
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 135 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private

Definition at line 136 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 138 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 157 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private

Definition at line 158 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 160 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private
template<class Real, class Element = Real>
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private
template<class Real, class Element = Real>
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private
template<class Real, class Element = Real>
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 177 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 178 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 146 of file dual-spaces/rosenbrock-1/example_01.cpp.

template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 168 of file dual-spaces/rosenbrock-1/example_02.cpp.

template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec,
ROL::Ptr< FiniteDifference< Real > >  fd 
)
inline

Definition at line 187 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 148 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 158 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 165 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 176 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 182 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 194 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 203 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::apply(), OptDualStdVector< Real, Element >::dot(), OptDualStdVector< Real, Element >::plus(), and OptDualStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 205 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 210 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 170 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 180 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 187 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 198 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 204 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 216 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 225 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 227 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 232 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::applyUnary ( const ROL::Elementwise::UnaryFunction< Real > &  f)
inline
template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::applyBinary ( const ROL::Elementwise::BinaryFunction< Real > &  f,
const ROL::Vector< Real > &  x 
)
inline
template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::reduce ( const ROL::Elementwise::ReductionOp< Real > &  r) const
inline
template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 154 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 163 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 170 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 181 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 187 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  ) const
inline
template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  )
inline
template<class Real, class Element = Real>
ROL::Ptr<ROL::Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 199 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 207 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 209 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 214 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 190 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 199 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 206 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 220 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 226 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  ) const
inline

Definition at line 230 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( void  )
inline

Definition at line 234 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
ROL::Ptr<Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 238 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 245 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 247 of file gross-pitaevskii/example_02.hpp.

Member Data Documentation

template<class Real, class Element = Real>
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
ROL::Ptr< OptStdVector< Real > > OptDualStdVector< Real, Element >::dual_vec_
mutableprivate
template<class Real, class Element = Real>
ROL::Ptr<FiniteDifference<Real> > OptDualStdVector< Real, Element >::fd_
private

Definition at line 183 of file gross-pitaevskii/example_02.hpp.


The documentation for this class was generated from the following files: