ROL
ROL_TypeB_InteriorPointAlgorithm_Def.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_TYPEB_PRIMALINTERIORPOINTALGORITHM_DEF_HPP
45 #define ROL_TYPEB_PRIMALINTERIORPOINTALGORITHM_DEF_HPP
46 
48 
49 namespace ROL {
50 namespace TypeB {
51 
52 template<typename Real>
54  : TypeB::Algorithm<Real>::Algorithm(), secant_(secant),
55  list_(list), subproblemIter_(0), print_(false) {
56  // Set status test
57  status_->reset();
58  status_->add(makePtr<StatusTest<Real>>(list));
59 
60  // Parse parameters
61  ParameterList& steplist = list.sublist("Step").sublist("Interior Point");
62  state_->searchSize = steplist.get("Initial Barrier Parameter", 1.0);
63  mumin_ = steplist.get("Minimum Barrier Parameter", 1e-4);
64  mumax_ = steplist.get("Maximum Barrier Parameter", 1e8);
65  rho_ = steplist.get("Barrier Penalty Reduction Factor", 0.5);
66  useLinearDamping_ = steplist.get("Use Linear Damping", true);
67  kappaD_ = steplist.get("Linear Damping Coefficient", 1.e-4);
68  print_ = steplist.sublist("Subproblem").get("Print History", false);
69  // Set parameters for step subproblem
70  gtol_ = steplist.sublist("Subproblem").get("Initial Optimality Tolerance", 1e-2);
71  stol_ = static_cast<Real>(1e-6)*gtol_;
72  int maxit = steplist.sublist("Subproblem").get("Iteration Limit", 1000);
73  list_.sublist("Status Test").set("Iteration Limit", maxit);
74  // Subproblem tolerance update parameters
75  gtolrate_ = steplist.sublist("Subproblem").get("Optimality Tolerance Reduction Factor", 0.1);
76  mingtol_ = static_cast<Real>(1e-2)*list.sublist("Status Test").get("Gradient Tolerance", 1e-8);
77  // Get step name from parameterlist
78  stepname_ = steplist.sublist("Subproblem").get("Step Type","Augmented Lagrangian");
79 
80  // Output settings
81  verbosity_ = list.sublist("General").get("Output Level", 0);
83  print_ = (verbosity_ > 2 ? true : print_);
84  list_.sublist("General").set("Output Level",(print_ ? verbosity_ : 0));
85 }
86 
87 template<typename Real>
89  const Vector<Real> &g,
92  Vector<Real> &pwa,
93  std::ostream &outStream) {
94  hasPolyProj_ = true;
95  if (proj_ == nullPtr) {
96  proj_ = makePtr<PolyhedralProjection<Real>>(makePtrFromRef(bnd));
97  hasPolyProj_ = false;
98  }
99  proj_->project(x,outStream);
100  bnd.projectInterior(x);
101  // Initialize data
103  // Initialize the algorithm state
104  state_->nfval = 0;
105  state_->ngrad = 0;
106  updateState(x,ipobj,bnd,pwa);
107 }
108 
109 
110 template<typename Real>
114  Vector<Real> &pwa,
115  std::ostream &outStream) {
116  const Real one(1);
117  Real zerotol = std::sqrt(ROL_EPSILON<Real>());
118  // Update objective and constraint
119  if (state_-> iter == 0) {
120  ipobj.update(x,UpdateType::Initial,state_->iter);
121  }
122  //else {
123  // ipobj.update(x,UpdateType::Accept,state_->iter);
124  //}
125  // Compute norm of the gradient of the Lagrangian
126  state_->value = ipobj.getObjectiveValue(x, zerotol);
127  //state_->gradientVec->set(*ipobj.getObjectiveGradient(x, zerotol));
128  ipobj.gradient(*state_->gradientVec, x, zerotol);
129  //state_->gnorm = state_->gradientVec->norm();
130  pwa.set(x);
131  pwa.axpy(-one,state_->gradientVec->dual());
132  proj_->project(pwa,outStream);
133  pwa.axpy(-one,x);
134  state_->gnorm = pwa.norm();
135  // Update state
136  state_->nfval++;
137  state_->ngrad++;
138 }
139 
140 template<typename Real>
142  const Vector<Real> &g,
143  Objective<Real> &obj,
145  std::ostream &outStream ) {
146  const Real one(1);
147  Ptr<Vector<Real>> pwa = x.clone();
148  // Initialize interior point data
149  InteriorPointObjective<Real> ipobj(makePtrFromRef(obj),makePtrFromRef(bnd),
150  x,g,useLinearDamping_,kappaD_,
151  state_->searchSize);
152  initialize(x,g,ipobj,bnd,*pwa,outStream);
153  Ptr<TypeU::Algorithm<Real>> algo;
154 
155  // Output
156  if (verbosity_ > 0) writeOutput(outStream,true);
157 
158  while (status_->check(*state_)) {
159  // Solve interior point subproblem
160  list_.sublist("Status Test").set("Gradient Tolerance", gtol_);
161  list_.sublist("Status Test").set("Step Tolerance", stol_);
162  algo = TypeU::AlgorithmFactory<Real>(list_,secant_);
163  if (hasPolyProj_) algo->run(x,g,ipobj,
164  *proj_->getLinearConstraint(),
165  *proj_->getMultiplier(),
166  *proj_->getResidual(),outStream);
167  else algo->run(x,g,ipobj,outStream);
168  subproblemIter_ = algo->getState()->iter;
169  state_->nfval += algo->getState()->nfval;
170  state_->ngrad += algo->getState()->ngrad;
171 
172  // Compute step
173  state_->stepVec->set(x);
174  state_->stepVec->axpy(-one,*state_->iterateVec);
175  state_->snorm = state_->stepVec->norm();
176 
177  // Update iterate
178  state_->iterateVec->set(x);
179 
180  // Update objective and constraint
181  state_->iter++;
182 
183  // Update barrier parameter and subproblem tolerances
184  if (algo->getState()->statusFlag == EXITSTATUS_CONVERGED) {
185  if( (rho_< one && state_->searchSize > mumin_) || (rho_ > one && state_->searchSize < mumax_) ) {
186  state_->searchSize *= rho_;
187  ipobj.updatePenalty(state_->searchSize);
188  }
189  gtol_ *= gtolrate_; gtol_ = std::max(gtol_,mingtol_);
190  stol_ = static_cast<Real>(1e-6)*gtol_;
191  }
192 
193  // Update state
194  updateState(x,ipobj,bnd,*pwa,outStream);
195 
196  // Update Output
197  if (verbosity_ > 0) writeOutput(outStream,writeHeader_);
198  }
199  if (verbosity_ > 0) TypeB::Algorithm<Real>::writeExitStatus(outStream);
200 }
201 
202 template<typename Real>
203 void InteriorPointAlgorithm<Real>::writeHeader( std::ostream& os ) const {
204  std::ios_base::fmtflags osFlags(os.flags());
205  if (verbosity_ > 1) {
206  os << std::string(109,'-') << std::endl;
207  os << "Interior Point Solver";
208  os << " status output definitions" << std::endl << std::endl;
209  os << " iter - Number of iterates (steps taken)" << std::endl;
210  os << " fval - Objective function value" << std::endl;
211  os << " gnorm - Norm of the gradient" << std::endl;
212  os << " snorm - Norm of the step (update to optimization vector)" << std::endl;
213  os << " penalty - Penalty parameter for bound constraints" << std::endl;
214  os << " #fval - Cumulative number of times the objective function was evaluated" << std::endl;
215  os << " #grad - Cumulative number of times the gradient was computed" << std::endl;
216  os << " optTol - Subproblem optimality tolerance" << std::endl;
217  os << " subiter - Number of subproblem iterations" << std::endl;
218  os << std::string(109,'-') << std::endl;
219  }
220 
221  os << " ";
222  os << std::setw(6) << std::left << "iter";
223  os << std::setw(15) << std::left << "fval";
224  os << std::setw(15) << std::left << "gnorm";
225  os << std::setw(15) << std::left << "snorm";
226  os << std::setw(10) << std::left << "penalty";
227  os << std::setw(8) << std::left << "#fval";
228  os << std::setw(8) << std::left << "#grad";
229  os << std::setw(10) << std::left << "optTol";
230  os << std::setw(8) << std::left << "subIter";
231  os << std::endl;
232  os.flags(osFlags);
233 }
234 
235 template<typename Real>
236 void InteriorPointAlgorithm<Real>::writeName( std::ostream& os ) const {
237  std::ios_base::fmtflags osFlags(os.flags());
238  os << std::endl << "Interior Point Solver (Type B, Bound Constraints)";
239  os << std::endl;
240  os << "Subproblem Solver: " << stepname_ << std::endl;
241  os.flags(osFlags);
242 }
243 
244 template<typename Real>
245 void InteriorPointAlgorithm<Real>::writeOutput( std::ostream& os, bool write_header ) const {
246  std::ios_base::fmtflags osFlags(os.flags());
247  os << std::scientific << std::setprecision(6);
248  if ( state_->iter == 0 ) writeName(os);
249  if ( write_header ) writeHeader(os);
250  if ( state_->iter == 0 ) {
251  os << " ";
252  os << std::setw(6) << std::left << state_->iter;
253  os << std::setw(15) << std::left << state_->value;
254  os << std::setw(15) << std::left << state_->gnorm;
255  os << std::setw(15) << std::left << "---";
256  os << std::scientific << std::setprecision(2);
257  os << std::setw(10) << std::left << state_->searchSize;
258  os << std::setw(8) << std::left << state_->nfval;
259  os << std::setw(8) << std::left << state_->ngrad;
260  os << std::setw(10) << std::left << "---";
261  os << std::setw(8) << std::left << "---";
262  os << std::endl;
263  }
264  else {
265  os << " ";
266  os << std::setw(6) << std::left << state_->iter;
267  os << std::setw(15) << std::left << state_->value;
268  os << std::setw(15) << std::left << state_->gnorm;
269  os << std::setw(15) << std::left << state_->snorm;
270  os << std::scientific << std::setprecision(2);
271  os << std::setw(10) << std::left << state_->searchSize;
272  os << std::scientific << std::setprecision(6);
273  os << std::setw(8) << std::left << state_->nfval;
274  os << std::setw(8) << std::left << state_->ngrad;
275  os << std::scientific << std::setprecision(2);
276  os << std::setw(10) << std::left << gtol_;
277  os << std::scientific << std::setprecision(6);
278  os << std::setw(8) << std::left << subproblemIter_;
279  os << std::endl;
280  }
281  os.flags(osFlags);
282 }
283 
284 } // namespace TypeB
285 } // namespace ROL
286 
287 #endif
Provides the interface to evaluate objective functions.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void projectInterior(Vector< Real > &x)
Project optimization variables into the interior of the feasible set.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
InteriorPointAlgorithm(ParameterList &list, const Ptr< Secant< Real >> &secant=nullPtr)
void run(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, std::ostream &outStream=std::cout) override
Run algorithm on bound constrained problems (Type-B). This general interface supports the use of dual...
void writeName(std::ostream &os) const override
Print step name.
virtual void writeExitStatus(std::ostream &os) const
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void initialize(Vector< Real > &x, const Vector< Real > &g, InteriorPointObjective< Real > &ipobj, BoundConstraint< Real > &bnd, Vector< Real > &pwa, std::ostream &outStream=std::cout)
void writeOutput(std::ostream &os, const bool write_header=false) const override
Print iterate status.
Provides an interface to run bound constrained optimization algorithms.
const Ptr< AlgorithmState< Real > > state_
Provides interface for and implements limited-memory secant operators.
Definition: ROL_Secant.hpp:79
void writeHeader(std::ostream &os) const override
Print iterate header.
Provides an interface to check status of optimization algorithms.
void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
Provides the interface to apply upper and lower bound constraints.
void initialize(const Vector< Real > &x, const Vector< Real > &g)
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
virtual Real norm() const =0
Returns where .
void updateState(const Vector< Real > &x, InteriorPointObjective< Real > &ipobj, BoundConstraint< Real > &bnd, Vector< Real > &pwa, std::ostream &outStream=std::cout)
Real getObjectiveValue(const Vector< Real > &x, Real &tol)
const Ptr< CombinedStatusTest< Real > > status_