ROL
ROL_InteriorPointObjective.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_INTERIORPOINTOBJECTIVE_H
45 #define ROL_INTERIORPOINTOBJECTIVE_H
46 
47 #include "ROL_Objective.hpp"
48 #include "ROL_BoundConstraint.hpp"
49 #include "ROL_ParameterList.hpp"
50 #include "ROL_ScalarController.hpp"
51 
61 namespace ROL {
62 
63 template<class Real>
64 class InteriorPointObjective : public Objective<Real> {
65 
66  typedef Elementwise::ValueSet<Real> ValueSet;
67 
68 private:
69 
70  const Ptr<Objective<Real>> obj_;
71  const Ptr<BoundConstraint<Real>> bnd_;
72  const Ptr<const Vector<Real>> lo_;
73  const Ptr<const Vector<Real>> up_;
74 
75  Ptr<Vector<Real>> maskL_; // Elements are 1 when xl>-INF, zero for xl =-INF
76  Ptr<Vector<Real>> maskU_; // Elements are 1 when xu< INF, zero for xu = INF
77  Ptr<Vector<Real>> maskL0_; // Elements are 1 when xl>-INF and xu = INF, zero for xl =-INF
78  Ptr<Vector<Real>> maskU0_; // Elements are 1 when xu< INF and XL =-INF, zero for xu = INF
79  Ptr<Vector<Real>> pwa_; // Scratch vector
80 
81  bool useLinearDamping_; // Add linear damping terms to the penalized objective
82  // to prevent the problems such as when the log barrier
83  // contribution is unbounded below on the feasible set
84  Real kappaD_; // Linear damping coefficient
85  Real mu_; // Penalty parameter
86 
87  Ptr<ScalarController<Real,int>> fval_;
88  Ptr<VectorController<Real,int>> gradient_;
89 
90  int nfval_;
91  int ngrad_;
92 
93  // x <- f(x) = { log(x) if x > 0
94  // { -inf if x <= 0
95  class ModifiedLogarithm : public Elementwise::UnaryFunction<Real> {
96  public:
97  Real apply( const Real &x ) const {
98  const Real zero(0), NINF(ROL_NINF<Real>());
99  return (x>zero) ? std::log(x) : NINF;
100  //return std::log(x);
101  }
102  }; // class ModifiedLogarithm
103 
104  // x <- f(x) = { 1/x if x > 0
105  // { 0 if x <= 0
106  class ModifiedReciprocal : public Elementwise::UnaryFunction<Real> {
107  public:
108  Real apply( const Real &x ) const {
109  const Real zero(0), one(1);
110  return (x>zero) ? one/x : zero;
111  //return one/x;
112  }
113 
114  }; // class ModifiedReciprocal
115 
116  // x <- f(x,y) = { y/x if x > 0
117  // { 0 if x <= 0
118  class ModifiedDivide : public Elementwise::BinaryFunction<Real> {
119  public:
120  Real apply( const Real &x, const Real &y ) const {
121  const Real zero(0);
122  return (x>zero) ? y/x : zero;
123  //return y/x;
124  }
125  }; // class ModifiedDivide
126 
127  // x <- f(x,y) = { x if y != 0, complement == false
128  // { 0 if y == 0, complement == false
129  // { 0 if y != 0, complement == true
130  // { x if y == 0, complement == true
131  class Mask : public Elementwise::BinaryFunction<Real> {
132  private:
134  public:
135  Mask( bool complement ) : complement_(complement) {}
136  Real apply( const Real &x, const Real &y ) const {
137  const Real zero(0);
138  return ( complement_ ^ (y != zero) ) ? zero : x;
139  }
140  }; // class Mask
141 
142  void initialize(const Vector<Real> &x, const Vector<Real> &g) {
143  const Real zero(0), one(1);
144 
145  fval_ = makePtr<ScalarController<Real,int>>();
146  gradient_ = makePtr<VectorController<Real,int>>();
147 
148  // Determine the index sets where the
149  ValueSet isBoundedBelow( ROL_NINF<Real>(), ValueSet::GREATER_THAN, one, zero );
150  ValueSet isBoundedAbove( ROL_INF<Real>(), ValueSet::LESS_THAN, one, zero );
151 
152  maskL_ = x.clone(); maskL_->applyBinary(isBoundedBelow,*lo_);
153  maskU_ = x.clone(); maskU_->applyBinary(isBoundedAbove,*up_);
154 
155  pwa_ = x.clone();
156 
157  if( useLinearDamping_ ) {
158  maskL0_ = x.clone();
159  maskL0_->set(*maskL_); // c_i = { 1 if l_i > NINF
160  // { 0 otherwise
161  maskL0_->applyBinary(Mask(true),*maskU_); // c_i = { 1 if l_i > NINF and u_i = INF
162  // { 0 otherwise
163  maskU0_ = x.clone();
164  maskU0_->set(*maskU_); // c_i = { 1 if u_i < INF
165  // { 0 otherwise
166  maskU0_->applyBinary(Mask(true),*maskL_); // c_i = { 1 if u_i < INF and l_i = NINF
167  // { 0 otherwise
168  }
169  }
170 
171 public:
172 
174  const Ptr<BoundConstraint<Real>> &bnd,
175  const Vector<Real> &x,
176  const Vector<Real> &g,
177  const bool useLinearDamping,
178  const Real kappaD,
179  const Real mu )
180  : obj_(obj), bnd_(bnd), lo_(bnd->getLowerBound()), up_(bnd->getUpperBound()),
181  useLinearDamping_(useLinearDamping), kappaD_(kappaD), mu_(mu),
182  nfval_(0), ngrad_(0) {
183  initialize(x,g);
184  }
185 
187  const Ptr<BoundConstraint<Real>> &bnd,
188  const Vector<Real> &x,
189  const Vector<Real> &g,
190  ParameterList &parlist )
191  : obj_(obj), bnd_(bnd), lo_(bnd->getLowerBound()), up_(bnd->getUpperBound()),
192  nfval_(0), ngrad_(0) {
193  ParameterList &iplist = parlist.sublist("Step").sublist("Primal Dual Interior Point");
194  ParameterList &lblist = iplist.sublist("Barrier Objective");
195 
196  useLinearDamping_ = lblist.get("Use Linear Damping", true);
197  kappaD_ = lblist.get("Linear Damping Coefficient", 1.e-4);
198  mu_ = lblist.get("Initial Barrier Parameter", 0.1);
199 
200  initialize(x,g);
201  }
202 
203  Real getObjectiveValue(const Vector<Real> &x, Real &tol) {
204  int key(0);
205  Real val(0);
206  bool isComputed = fval_->get(val,key);
207  if (!isComputed) {
208  val = obj_->value(x,tol); nfval_++;
209  fval_->set(val,key);
210  }
211  return val;
212  }
213 
214  const Ptr<const Vector<Real>> getObjectiveGradient(const Vector<Real> &x, Real &tol) {
215  int key(0);
216  if (!gradient_->isComputed(key)) {
217  if (gradient_->isNull(key)) gradient_->allocate(x.dual(),key);
218  obj_->gradient(*gradient_->set(key),x,tol); ngrad_++;
219  }
220  return gradient_->get(key);
221  }
222 
224  return nfval_;
225  }
226 
228  return ngrad_;
229  }
230 
231  void updatePenalty(const Real mu) {
232  mu_ = mu;
233  }
234 
235  void update( const Vector<Real> &x, UpdateType type, int iter = -1 ) {
236  obj_->update(x,type,iter);
237  fval_->objectiveUpdate(type);
238  gradient_->objectiveUpdate(type);
239  }
240 
241  Real value( const Vector<Real> &x, Real &tol ) {
242  const Real zero(0), one(1);
243  Real linearTerm = zero;
244  // Compute the unpenalized objective value
245  Real fval = getObjectiveValue(x,tol);
246  // Compute log barrier
247  ModifiedLogarithm mlog;
248  Elementwise::ReductionSum<Real> sum;
249  Elementwise::Multiply<Real> mult;
250 
251  pwa_->set(x); // pwa = x
252  pwa_->axpy(-one,*lo_); // pwa = x-l
253  if( useLinearDamping_ ) {
254  // Penalizes large positive x_i when only a lower bound exists
255  linearTerm += maskL0_->dot(*pwa_);
256  }
257  pwa_->applyUnary(mlog); // pwa = mlog(x-l)
258  Real aval = pwa_->dot(*maskL_);
259 
260  pwa_->set(*up_); // pwa = u
261  pwa_->axpy(-one,x); // pwa = u-x
262  if( useLinearDamping_ ) {
263  // Penalizes large negative x_i when only an upper bound exists
264  linearTerm += maskU0_->dot(*pwa_);
265  }
266  pwa_->applyUnary(mlog); // pwa = mlog(u-x)
267  Real bval = pwa_->dot(*maskU_);
268 
269  fval -= mu_*(aval+bval);
270  fval += kappaD_*mu_*linearTerm;
271  return fval;
272  }
273 
274  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
275  const Real one(1);
276  // Compute gradient of objective function
277  g.set(*getObjectiveGradient(x,tol));
278 
279  // Add gradient of the log barrier penalty
280  ModifiedReciprocal mrec;
281 
282  pwa_->set(x); // pwa = x
283  pwa_->axpy(-one,*lo_); // pwa = x-l
284  pwa_->applyUnary(mrec); // pwa_i = 1/(x_i-l_i) for i s.t. x_i > l_i, 0 otherwise
285  pwa_->applyBinary(Mask(true),*maskL_); // zero elements where l = NINF
286  g.axpy(-mu_,pwa_->dual());
287  if( useLinearDamping_ ) {
288  g.axpy(-mu_*kappaD_,maskL0_->dual());
289  }
290 
291  pwa_->set(*up_); // pwa = u
292  pwa_->axpy(-one,x); // pwa = u-x
293  pwa_->applyUnary(mrec); // pwa_i = 1/(u_i-x_i) for i s.t. u_i > x_i, 0 otherwise
294  pwa_->applyBinary(Mask(true),*maskU_); // zero elements where u = INF
295  g.axpy( mu_,pwa_->dual());
296  if( useLinearDamping_ ) {
297  g.axpy( mu_*kappaD_,maskU0_->dual());
298  }
299  }
300 
301  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
302  const Real one(1), two(2);
303  // Evaluate objective hessian
304  obj_->hessVec(hv,v,x,tol);
305 
306  // Evaluate log barrier hessian
307  ModifiedReciprocal mrec;
308  Elementwise::Multiply<Real> mult;
309  Elementwise::Power<Real> square(two);
310 
311  pwa_->set(x); // pwa = x
312  pwa_->axpy(-one,*lo_); // pwa = x-l
313  pwa_->applyUnary(mrec); // pwa_i = 1/(x_i-l_i) for i s.t. x_i > l_i, 0 otherwise
314  pwa_->applyBinary(Mask(true),*maskL_); // zero elements where l = NINF
315  pwa_->applyUnary(square); // pwa_i = { (x_i-l_i)^(-2) if l_i > NINF
316  // { 0 if l_i = NINF
317  pwa_->applyBinary(mult,v);
318  hv.axpy(mu_,pwa_->dual());
319 
320  pwa_->set(*up_); // pwa = u
321  pwa_->axpy(-one,x); // pwa = u-x
322  pwa_->applyUnary(mrec); // pwa_i = 1/(u_i-x_i) for i s.t. u_i > x_i, 0 otherwise
323  pwa_->applyBinary(Mask(true),*maskU_); // zero elements where u = INF
324  pwa_->applyUnary(square); // pwa_i = { (u_i-x_i)^(-2) if u_i < INF
325  // { 0 if u_i = INF
326  pwa_->applyBinary(mult,v);
327  hv.axpy(mu_,pwa_->dual());
328  }
329 
330 }; // class InteriorPointObjective
331 
332 }
333 
334 #endif // ROL_INTERIORPOINTOBJECTIVE_H
Provides the interface to evaluate objective functions.
InteriorPointObjective(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Vector< Real > &x, const Vector< Real > &g, ParameterList &parlist)
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
Definition: ROL_Vector.hpp:226
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
const Ptr< const Vector< Real > > lo_
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void initialize(const Vector< Real > &x, const Vector< Real > &g)
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
Ptr< ScalarController< Real, int > > fval_
Real apply(const Real &x, const Real &y) const
void update(const Vector< Real > &x, UpdateType type, int iter=-1)
Update objective function.
const Ptr< Objective< Real > > obj_
Provides the interface to apply upper and lower bound constraints.
Elementwise::ValueSet< Real > ValueSet
const Ptr< BoundConstraint< Real > > bnd_
Real value(const Vector< Real > &x, Real &tol)
Compute value.
const Ptr< const Vector< Real > > getObjectiveGradient(const Vector< Real > &x, Real &tol)
const Ptr< const Vector< Real > > up_
void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
Ptr< VectorController< Real, int > > gradient_
InteriorPointObjective(const Ptr< Objective< Real >> &obj, const Ptr< BoundConstraint< Real >> &bnd, const Vector< Real > &x, const Vector< Real > &g, const bool useLinearDamping, const Real kappaD, const Real mu)
Real apply(const Real &x, const Real &y) const
Real getObjectiveValue(const Vector< Real > &x, Real &tol)