ROL
ROL_SimulatedBoundConstraint.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_SIMULATED_BOUND_CONSTRAINT_H
45 #define ROL_SIMULATED_BOUND_CONSTRAINT_H
46 
47 #include "ROL_BoundConstraint.hpp"
48 #include "ROL_SimulatedVector.hpp"
49 
56 namespace ROL {
57 
58 template <class Real>
60 private:
61  const Ptr<SampleGenerator<Real>> sampler_;
62  const Ptr<BoundConstraint<Real>> bnd_;
63  Ptr<Vector<Real>> l_;
64  Ptr<Vector<Real>> u_;
65 
66  const Vector<Real>& getVector(const Vector<Real> &x, int k) const {
67  try {
68  return *(dynamic_cast<const SimulatedVector<Real>&>(x).get(k));
69  }
70  catch (const std::bad_cast &e) {
71  return x;
72  }
73  }
74 
75  Vector<Real>& getVector(Vector<Real> &x, int k) const {
76  try {
77  return *(dynamic_cast<SimulatedVector<Real>&>(x).get(k));
78  }
79  catch (const std::bad_cast &e) {
80  return x;
81  }
82  }
83 
84 public:
86 
88  const Ptr<BoundConstraint<Real>> &bnd )
89  : sampler_(sampler), bnd_(bnd) {
90  int nsamp = sampler_->numMySamples();
91  std::vector<Ptr<Vector<Real>>> lvec(nsamp), uvec(nsamp);
92  for ( int k=0; k<sampler_->numMySamples(); ++k) {
93  lvec[k] = bnd_->getLowerBound()->clone();
94  lvec[k]->set(*bnd_->getLowerBound());
95  uvec[k] = bnd_->getUpperBound()->clone();
96  uvec[k]->set(*bnd_->getUpperBound());
97  }
98  l_ = makePtr<SimulatedVector<Real>>(lvec,sampler_->getBatchManager());
99  u_ = makePtr<SimulatedVector<Real>>(uvec,sampler_->getBatchManager());
100  }
101 
102  void project( Vector<Real> &x ) {
103  for( int k=0; k<sampler_->numMySamples(); ++k ) {
104  if( bnd_->isActivated() ) {
105  bnd_->project(getVector(x,k));
106  }
107  }
108  }
109 
111  for( int k=0; k<sampler_->numMySamples(); ++k ) {
112  if( bnd_->isActivated() ) {
113  bnd_->projectInterior(getVector(x,k));
114  }
115  }
116  }
117 
118  void pruneUpperActive( Vector<Real> &v, const Vector<Real> &x, Real eps = Real(0) ) {
119  if( bnd_->isActivated() ) {
120  for( int k=0; k<sampler_->numMySamples(); ++k ) {
121  bnd_->pruneUpperActive(getVector(v,k),getVector(x,k),eps);
122  }
123  }
124  }
125 
126  void pruneUpperActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real xeps = Real(0), Real geps = Real(0) ) {
127  if( bnd_->isActivated() ) {
128  for( int k=0; k<sampler_->numMySamples(); ++k ) {
129  bnd_->pruneUpperActive(getVector(v,k),getVector(g,k),getVector(x,k),xeps,geps);
130  }
131  }
132  }
133 
134  void pruneLowerActive( Vector<Real> &v, const Vector<Real> &x, Real eps = Real(0) ) {
135  if( bnd_->isActivated() ) {
136  for( int k=0; k<sampler_->numMySamples(); ++k ) {
137  bnd_->pruneLowerActive(getVector(v,k),getVector(x,k),eps);
138  }
139  }
140  }
141 
142  void pruneLowerActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real xeps = Real(0), Real geps = Real(0) ) {
143  if( bnd_->isActivated() ) {
144  for( int k=0; k<sampler_->numMySamples(); ++k ) {
145  bnd_->pruneLowerActive(getVector(v,k),getVector(g,k),getVector(x,k),xeps,geps);
146  }
147  }
148  }
149 
150  const Ptr<const Vector<Real>> getLowerBound( void ) const {
151  return l_;
152  }
153 
154  const Ptr<const Vector<Real>> getUpperBound( void ) const {
155  return u_;
156  }
157 
158  bool isFeasible( const Vector<Real> &v ) {
159  bool feasible = true;
160  if(bnd_->isActivated()) {
161  for( int k=0; k<sampler_->numMySamples(); ++k ) {
162  feasible = feasible && bnd_->isFeasible(getVector(v,k));
163  }
164  }
165  return feasible;
166  }
167 
168  void applyInverseScalingFunction(Vector<Real> &dv, const Vector<Real> &v, const Vector<Real> &x, const Vector<Real> &g) const {
169  if( bnd_->isActivated() ) {
170  for( int k=0; k<sampler_->numMySamples(); ++k ) {
171  bnd_->applyInverseScalingFunction(getVector(dv,k),getVector(v,k),getVector(x,k),getVector(g,k));
172  }
173  }
174  }
175 
176  void applyScalingFunctionJacobian(Vector<Real> &dv, const Vector<Real> &v, const Vector<Real> &x, const Vector<Real> &g) const {
177  if( bnd_->isActivated() ) {
178  for( int k=0; k<sampler_->numMySamples(); ++k ) {
179  bnd_->applyScalingFunctionJacobian(getVector(dv,k),getVector(v,k),getVector(x,k),getVector(g,k));
180  }
181  }
182  }
183 }; // class SimulatedBoundConstraint
184 } // namespace ROL
185 
186 #endif
void pruneLowerActive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the lower -active set.
Vector< Real > & getVector(Vector< Real > &x, int k) const
void project(Vector< Real > &x)
Project optimization variables onto the bounds.
A BoundConstraint formed from a single bound constraint replacated according to a SampleGenerator...
void projectInterior(Vector< Real > &x)
Project optimization variables into the interior of the feasible set.
void pruneUpperActive(Vector< Real > &v, const Vector< Real > &g, const Vector< Real > &x, Real xeps=Real(0), Real geps=Real(0))
Set variables to zero if they correspond to the upper -binding set.
void pruneLowerActive(Vector< Real > &v, const Vector< Real > &g, const Vector< Real > &x, Real xeps=Real(0), Real geps=Real(0))
Set variables to zero if they correspond to the -binding set.
SimulatedBoundConstraint(const Ptr< SampleGenerator< Real >> &sampler, const Ptr< BoundConstraint< Real >> &bnd)
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
const Ptr< SampleGenerator< Real > > sampler_
Defines the linear algebra of a vector space on a generic partitioned vector where the individual vec...
const Vector< Real > & getVector(const Vector< Real > &x, int k) const
bool isFeasible(const Vector< Real > &v)
Check if the vector, v, is feasible.
Provides the interface to apply upper and lower bound constraints.
void applyScalingFunctionJacobian(Vector< Real > &dv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g) const
Apply scaling function Jacobian.
const Ptr< BoundConstraint< Real > > bnd_
const Ptr< const Vector< Real > > getLowerBound(void) const
Return the ref count pointer to the lower bound vector.
void pruneUpperActive(Vector< Real > &v, const Vector< Real > &x, Real eps=Real(0))
Set variables to zero if they correspond to the upper -active set.
const Ptr< const Vector< Real > > getUpperBound(void) const
Return the ref count pointer to the upper bound vector.
void applyInverseScalingFunction(Vector< Real > &dv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g) const
Apply inverse scaling function.