Intrepid2
Intrepid2_HGRAD_QUAD_Cn_FEMDef.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid2 Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
38 // Mauro Perego (mperego@sandia.gov)
39 //
40 // ************************************************************************
41 // @HEADER
42 
49 #ifndef __INTREPID2_HGRAD_QUAD_CN_FEM_DEF_HPP__
50 #define __INTREPID2_HGRAD_QUAD_CN_FEM_DEF_HPP__
51 
52 namespace Intrepid2 {
53 
54  // -------------------------------------------------------------------------------------
55  namespace Impl {
56 
57  template<EOperator opType>
58  template<typename outputViewType,
59  typename inputViewType,
60  typename workViewType,
61  typename vinvViewType>
62  KOKKOS_INLINE_FUNCTION
63  void
64  Basis_HGRAD_QUAD_Cn_FEM::Serial<opType>::
65  getValues( outputViewType output,
66  const inputViewType input,
67  workViewType work,
68  const vinvViewType vinv,
69  const ordinal_type operatorDn ) {
70  ordinal_type opDn = operatorDn;
71 
72  const ordinal_type cardLine = vinv.extent(0);
73  const ordinal_type npts = input.extent(0);
74 
75  typedef Kokkos::pair<ordinal_type,ordinal_type> range_type;
76  const auto input_x = Kokkos::subview(input, Kokkos::ALL(), range_type(0,1));
77  const auto input_y = Kokkos::subview(input, Kokkos::ALL(), range_type(1,2));
78 
79  const int dim_s = get_dimension_scalar(work);
80  auto ptr0 = work.data();
81  auto ptr1 = work.data()+cardLine*npts*dim_s;
82  auto ptr2 = work.data()+2*cardLine*npts*dim_s;
83 
84  typedef typename Kokkos::DynRankView<typename workViewType::value_type, typename workViewType::memory_space> viewType;
85  auto vcprop = Kokkos::common_view_alloc_prop(work);
86 
87  switch (opType) {
88  case OPERATOR_VALUE: {
89  viewType work_line(Kokkos::view_wrap(ptr0, vcprop), cardLine, npts);
90  viewType output_x(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts);
91  viewType output_y(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts);
92 
93  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
94  getValues(output_x, input_x, work_line, vinv);
95 
96  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
97  getValues(output_y, input_y, work_line, vinv);
98 
99  // tensor product
100  ordinal_type idx = 0;
101  for (ordinal_type j=0;j<cardLine;++j) // y
102  for (ordinal_type i=0;i<cardLine;++i,++idx) // x
103  for (ordinal_type k=0;k<npts;++k)
104  output.access(idx,k) = output_x.access(i,k)*output_y.access(j,k);
105  break;
106  }
107  case OPERATOR_CURL: {
108  for (auto l=0;l<2;++l) {
109  viewType work_line(Kokkos::view_wrap(ptr0, vcprop), cardLine, npts);
110 
111  viewType output_x, output_y;
112 
113  typename workViewType::value_type s = 0.0;
114  if (l) {
115  // l = 1
116  output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts, 1);
117  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
118  getValues(output_x, input_x, work_line, vinv, 1);
119 
120  output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts);
121  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
122  getValues(output_y, input_y, work_line, vinv);
123 
124  s = -1.0;
125  } else {
126  // l = 0
127  output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts);
128  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
129  getValues(output_x, input_x, work_line, vinv);
130 
131  output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts, 1);
132  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
133  getValues(output_y, input_y, work_line, vinv, 1);
134 
135  s = 1.0;
136  }
137 
138  // tensor product (extra dimension of ouput x and y are ignored)
139  ordinal_type idx = 0;
140  for (ordinal_type j=0;j<cardLine;++j) // y
141  for (ordinal_type i=0;i<cardLine;++i,++idx) // x
142  for (ordinal_type k=0;k<npts;++k)
143  output.access(idx,k,l) = s*output_x.access(i,k,0)*output_y.access(j,k,0);
144  }
145  break;
146  }
147  case OPERATOR_GRAD:
148  case OPERATOR_D1:
149  case OPERATOR_D2:
150  case OPERATOR_D3:
151  case OPERATOR_D4:
152  case OPERATOR_D5:
153  case OPERATOR_D6:
154  case OPERATOR_D7:
155  case OPERATOR_D8:
156  case OPERATOR_D9:
157  case OPERATOR_D10:
158  opDn = getOperatorOrder(opType);
159  case OPERATOR_Dn: {
160  const auto dkcard = opDn + 1;
161  for (auto l=0;l<dkcard;++l) {
162  viewType work_line(Kokkos::view_wrap(ptr0, vcprop), cardLine, npts);
163 
164  viewType output_x, output_y;
165 
166  const auto mult_x = opDn - l;
167  const auto mult_y = l;
168 
169  if (mult_x) {
170  output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts, 1);
171  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
172  getValues(output_x, input_x, work_line, vinv, mult_x);
173  } else {
174  output_x = viewType(Kokkos::view_wrap(ptr1, vcprop), cardLine, npts);
175  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
176  getValues(output_x, input_x, work_line, vinv);
177  }
178 
179  if (mult_y) {
180  output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts, 1);
181  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_Dn>::
182  getValues(output_y, input_y, work_line, vinv, mult_y);
183  } else {
184  output_y = viewType(Kokkos::view_wrap(ptr2, vcprop), cardLine, npts);
185  Impl::Basis_HGRAD_LINE_Cn_FEM::Serial<OPERATOR_VALUE>::
186  getValues(output_y, input_y, work_line, vinv);
187  }
188 
189  // tensor product (extra dimension of ouput x and y are ignored)
190  ordinal_type idx = 0;
191  for (ordinal_type j=0;j<cardLine;++j) // y
192  for (ordinal_type i=0;i<cardLine;++i,++idx) // x
193  for (ordinal_type k=0;k<npts;++k)
194  output.access(idx,k,l) = output_x.access(i,k,0)*output_y.access(j,k,0);
195  }
196  break;
197  }
198  default: {
199  INTREPID2_TEST_FOR_ABORT( true,
200  ">>> ERROR: (Intrepid2::Basis_HGRAD_QUAD_Cn_FEM::Serial::getValues) operator is not supported" );
201  }
202  }
203  }
204 
205  template<typename SpT, ordinal_type numPtsPerEval,
206  typename outputValueValueType, class ...outputValueProperties,
207  typename inputPointValueType, class ...inputPointProperties,
208  typename vinvValueType, class ...vinvProperties>
209  void
210  Basis_HGRAD_QUAD_Cn_FEM::
211  getValues( Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValues,
212  const Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPoints,
213  const Kokkos::DynRankView<vinvValueType, vinvProperties...> vinv,
214  const EOperator operatorType ) {
215  typedef Kokkos::DynRankView<outputValueValueType,outputValueProperties...> outputValueViewType;
216  typedef Kokkos::DynRankView<inputPointValueType, inputPointProperties...> inputPointViewType;
217  typedef Kokkos::DynRankView<vinvValueType, vinvProperties...> vinvViewType;
218  typedef typename ExecSpace<typename inputPointViewType::execution_space,SpT>::ExecSpaceType ExecSpaceType;
219 
220  // loopSize corresponds to cardinality
221  const auto loopSizeTmp1 = (inputPoints.extent(0)/numPtsPerEval);
222  const auto loopSizeTmp2 = (inputPoints.extent(0)%numPtsPerEval != 0);
223  const auto loopSize = loopSizeTmp1 + loopSizeTmp2;
224  Kokkos::RangePolicy<ExecSpaceType,Kokkos::Schedule<Kokkos::Static> > policy(0, loopSize);
225 
226  typedef typename inputPointViewType::value_type inputPointType;
227 
228  const ordinal_type cardinality = outputValues.extent(0);
229  const ordinal_type cardLine = std::sqrt(cardinality);
230  const ordinal_type workSize = 3*cardLine;
231 
232  auto vcprop = Kokkos::common_view_alloc_prop(inputPoints);
233  typedef typename Kokkos::DynRankView< inputPointType, typename inputPointViewType::memory_space> workViewType;
234  workViewType work(Kokkos::view_alloc("Basis_HGRAD_QUAD_Cn_FEM::getValues::work", vcprop), workSize, inputPoints.extent(0));
235 
236  switch (operatorType) {
237  case OPERATOR_VALUE: {
238  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
239  OPERATOR_VALUE,numPtsPerEval> FunctorType;
240  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work) );
241  break;
242  }
243  case OPERATOR_CURL: {
244  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
245  OPERATOR_CURL,numPtsPerEval> FunctorType;
246  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work) );
247  break;
248  }
249  case OPERATOR_GRAD:
250  case OPERATOR_D1:
251  case OPERATOR_D2:
252  case OPERATOR_D3:
253  case OPERATOR_D4:
254  case OPERATOR_D5:
255  case OPERATOR_D6:
256  case OPERATOR_D7:
257  case OPERATOR_D8:
258  case OPERATOR_D9:
259  case OPERATOR_D10: {
260  typedef Functor<outputValueViewType,inputPointViewType,vinvViewType,workViewType,
261  OPERATOR_Dn,numPtsPerEval> FunctorType;
262  Kokkos::parallel_for( policy, FunctorType(outputValues, inputPoints, vinv, work,
263  getOperatorOrder(operatorType)) );
264  break;
265  }
266  default: {
267  INTREPID2_TEST_FOR_EXCEPTION( true , std::invalid_argument,
268  ">>> ERROR (Basis_HGRAD_QUAD_Cn_FEM): Operator type not implemented" );
269  // break;commented out because exception
270  }
271  }
272  }
273  }
274 
275  // -------------------------------------------------------------------------------------
276  template<typename SpT, typename OT, typename PT>
278  Basis_HGRAD_QUAD_Cn_FEM( const ordinal_type order,
279  const EPointType pointType ) {
280  // INTREPID2_TEST_FOR_EXCEPTION( !(pointType == POINTTYPE_EQUISPACED ||
281  // pointType == POINTTYPE_WARPBLEND), std::invalid_argument,
282  // ">>> ERROR (Basis_HGRAD_QUAD_Cn_FEM): pointType must be either equispaced or warpblend." );
283 
284  // this should be in host
285  Basis_HGRAD_LINE_Cn_FEM<SpT,OT,PT> lineBasis( order, pointType );
286  const auto cardLine = lineBasis.getCardinality();
287 
288  this->vinv_ = Kokkos::DynRankView<typename scalarViewType::value_type,SpT>("Hgrad::Quad::Cn::vinv", cardLine, cardLine);
289  lineBasis.getVandermondeInverse(this->vinv_);
290 
291  this->basisCardinality_ = cardLine*cardLine;
292  this->basisDegree_ = order;
293  this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() );
294  this->basisType_ = BASIS_FEM_FIAT;
295  this->basisCoordinates_ = COORDINATES_CARTESIAN;
296 
297  // initialize tags
298  {
299  // Basis-dependent initializations
300  const ordinal_type tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
301  const ordinal_type posScDim = 0; // position in the tag, counting from 0, of the subcell dim
302  const ordinal_type posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
303  const ordinal_type posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
304 
305  // An array with local DoF tags assigned to the basis functions, in the order of their local enumeration
306  constexpr ordinal_type maxCardLine = Parameters::MaxOrder + 1;
307  ordinal_type tags[maxCardLine*maxCardLine][4];
308 
309  const ordinal_type vert[2][2] = { {0,1}, {3,2} }; //[y][x]
310 
311  const ordinal_type edge_x[2] = {0,2};
312  const ordinal_type edge_y[2] = {3,1};
313  {
314  ordinal_type idx = 0;
315  for (ordinal_type j=0;j<cardLine;++j) { // y
316  const auto tag_y = lineBasis.getDofTag(j);
317  for (ordinal_type i=0;i<cardLine;++i,++idx) { // x
318  const auto tag_x = lineBasis.getDofTag(i);
319 
320  if (tag_x(0) == 0 && tag_y(0) == 0) {
321  // vertices
322  tags[idx][0] = 0; // vertex dof
323  tags[idx][1] = vert[tag_y(1)][tag_x(1)]; // vertex id
324  tags[idx][2] = 0; // local dof id
325  tags[idx][3] = 1; // total number of dofs in this vertex
326  } else if (tag_x(0) == 1 && tag_y(0) == 0) {
327  // edge: x edge, y vert
328  tags[idx][0] = 1; // edge dof
329  tags[idx][1] = edge_x[tag_y(1)];
330  tags[idx][2] = tag_x(2); // local dof id
331  tags[idx][3] = tag_x(3); // total number of dofs in this vertex
332  } else if (tag_x(0) == 0 && tag_y(0) == 1) {
333  // edge: x vert, y edge
334  tags[idx][0] = 1; // edge dof
335  tags[idx][1] = edge_y[tag_x(1)];
336  tags[idx][2] = tag_y(2); // local dof id
337  tags[idx][3] = tag_y(3); // total number of dofs in this vertex
338  } else {
339  // interior
340  tags[idx][0] = 2; // interior dof
341  tags[idx][1] = 0;
342  tags[idx][2] = tag_x(2) + tag_x(3)*tag_y(2); // local dof id
343  tags[idx][3] = tag_x(3)*tag_y(3); // total number of dofs in this vertex
344  }
345  }
346  }
347  }
348 
349  ordinal_type_array_1d_host tagView(&tags[0][0], this->basisCardinality_*4);
350 
351  // Basis-independent function sets tag and enum data in tagToOrdinal_ and ordinalToTag_ arrays:
352  // tags are constructed on host
353  this->setOrdinalTagData(this->tagToOrdinal_,
354  this->ordinalToTag_,
355  tagView,
356  this->basisCardinality_,
357  tagSize,
358  posScDim,
359  posScOrd,
360  posDfOrd);
361  }
362 
363  // dofCoords on host and create its mirror view to device
364  Kokkos::DynRankView<typename scalarViewType::value_type,typename SpT::array_layout,Kokkos::HostSpace>
365  dofCoordsHost("dofCoordsHost", this->basisCardinality_, this->basisCellTopology_.getDimension());
366 
367  Kokkos::DynRankView<typename scalarViewType::value_type,SpT>
368  dofCoordsLine("dofCoordsLine", cardLine, 1);
369 
370  lineBasis.getDofCoords(dofCoordsLine);
371  auto dofCoordsLineHost = Kokkos::create_mirror_view(dofCoordsLine);
372  Kokkos::deep_copy(dofCoordsLineHost, dofCoordsLine);
373  {
374  ordinal_type idx = 0;
375  for (ordinal_type j=0;j<cardLine;++j) { // y
376  for (ordinal_type i=0;i<cardLine;++i,++idx) { // x
377  dofCoordsHost(idx,0) = dofCoordsLineHost(i,0);
378  dofCoordsHost(idx,1) = dofCoordsLineHost(j,0);
379  }
380  }
381  }
382 
383  this->dofCoords_ = Kokkos::create_mirror_view(typename SpT::memory_space(), dofCoordsHost);
384  Kokkos::deep_copy(this->dofCoords_, dofCoordsHost);
385  }
386 
387 }// namespace Intrepid2
388 
389 #endif
ordinal_type getCardinality() const
Returns cardinality of the basis.
Basis_HGRAD_QUAD_Cn_FEM(const ordinal_type order, const EPointType pointType=POINTTYPE_EQUISPACED)
Constructor.
Kokkos::View< ordinal_type *,typename ExecSpaceType::array_layout, Kokkos::HostSpace > ordinal_type_array_1d_host
View type for 1d host array.
const ordinal_type_array_stride_1d_host getDofTag(const ordinal_type dofOrd) const
DoF ordinal to DoF tag lookup.
Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1...
static constexpr ordinal_type MaxOrder
The maximum reconstruction order.
virtual void getDofCoords(scalarViewType dofCoords) const
Returns spatial locations (coordinates) of degrees of freedom on the reference cell.