42 #ifndef TPETRA_COMPUTEROWANDCOLUMNONENORMS_DEF_HPP
43 #define TPETRA_COMPUTEROWANDCOLUMNONENORMS_DEF_HPP
53 #include "Tpetra_CrsMatrix.hpp"
54 #include "Tpetra_Export.hpp"
55 #include "Tpetra_Map.hpp"
56 #include "Tpetra_MultiVector.hpp"
57 #include "Tpetra_RowMatrix.hpp"
58 #include "Kokkos_Core.hpp"
59 #include "Teuchos_CommHelpers.hpp"
65 template<
class SC,
class LO,
class GO,
class NT>
70 const LO lclNumRows =
static_cast<LO
> (rowMap.getNodeNumElements ());
72 std::size_t maxNumEnt {0};
73 for (LO lclRow = 0; lclRow < lclNumRows; ++lclRow) {
75 maxNumEnt = numEnt > maxNumEnt ? numEnt : maxNumEnt;
80 template<
class SC,
class LO,
class GO,
class NT>
84 const std::size_t maxNumEnt,
85 std::function<
void (
const LO lclRow,
86 const Teuchos::ArrayView<LO>& ,
87 const Teuchos::ArrayView<SC>& ,
88 std::size_t )> doForEachRow)
90 Teuchos::Array<LO> indBuf (maxNumEnt);
91 Teuchos::Array<SC> valBuf (maxNumEnt);
93 for (LO lclRow = 0; lclRow < lclNumRows; ++lclRow) {
95 Teuchos::ArrayView<LO> ind = indBuf.view (0, numEnt);
96 Teuchos::ArrayView<SC> val = valBuf.view (0, numEnt);
98 doForEachRow (lclRow, ind, val, numEnt);
102 template<
class SC,
class LO,
class GO,
class NT>
105 std::function<
void (
const LO lclRow,
106 const Teuchos::ArrayView<LO>& ,
107 const Teuchos::ArrayView<SC>& ,
108 std::size_t )> doForEachRow)
111 const LO lclNumRows =
static_cast<LO
> (rowMap.getNodeNumElements ());
112 const std::size_t maxNumEnt = lclMaxNumEntriesRowMatrix (A);
114 forEachLocalRowMatrixRow<SC, LO, GO, NT> (A, lclNumRows, maxNumEnt, doForEachRow);
120 template<
class SC,
class LO,
class GO,
class NT>
123 typename NT::device_type>& result,
126 using KAT = Kokkos::ArithTraits<SC>;
127 using mag_type =
typename KAT::mag_type;
129 auto rowNorms_h = Kokkos::create_mirror_view (result.rowNorms);
131 auto rowScaledColNorms_h = Kokkos::create_mirror_view (result.rowScaledColNorms);
133 forEachLocalRowMatrixRow<SC, LO, GO, NT> (A,
134 [&] (
const LO lclRow,
135 const Teuchos::ArrayView<LO>& ind,
136 const Teuchos::ArrayView<SC>& val,
137 std::size_t numEnt) {
138 const mag_type rowNorm = rowNorms_h[lclRow];
139 for (std::size_t k = 0; k < numEnt; ++k) {
140 const mag_type matrixAbsVal = KAT::abs (val[k]);
141 const LO lclCol = ind[k];
143 rowScaledColNorms_h[lclCol] += matrixAbsVal / rowNorm;
151 template<
class SC,
class LO,
class GO,
class NT>
152 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
typename NT::device_type>
155 using KAT = Kokkos::ArithTraits<SC>;
156 using val_type =
typename KAT::val_type;
157 using mag_type =
typename KAT::mag_type;
158 using KAM = Kokkos::ArithTraits<mag_type>;
159 using device_type =
typename NT::device_type;
164 const LO lclNumRows =
static_cast<LO
> (rowMap.getNodeNumElements ());
165 const LO lclNumCols = 0;
166 constexpr
bool assumeSymmetric =
false;
167 equib_info_type result (lclNumRows, lclNumCols, assumeSymmetric);
168 auto result_h = result.createMirrorView ();
170 forEachLocalRowMatrixRow<SC, LO, GO, NT> (A,
171 [&] (
const LO lclRow,
172 const Teuchos::ArrayView<LO>& ind,
173 const Teuchos::ArrayView<SC>& val,
174 std::size_t numEnt) {
175 mag_type rowNorm {0.0};
176 val_type diagVal {0.0};
177 const GO gblRow = rowMap.getGlobalElement (lclRow);
179 const GO lclDiagColInd = colMap.getLocalElement (gblRow);
181 for (std::size_t k = 0; k < numEnt; ++k) {
182 const val_type matrixVal = val[k];
183 if (KAT::isInf (matrixVal)) {
184 result_h.foundInf =
true;
186 if (KAT::isNan (matrixVal)) {
187 result_h.foundNan =
true;
189 const mag_type matrixAbsVal = KAT::abs (matrixVal);
190 rowNorm += matrixAbsVal;
191 const LO lclCol = ind[k];
192 if (lclCol == lclDiagColInd) {
199 if (diagVal == KAT::zero ()) {
200 result_h.foundZeroDiag =
true;
202 if (rowNorm == KAM::zero ()) {
203 result_h.foundZeroRowNorm =
true;
209 result_h.rowDiagonalEntries[lclRow] += diagVal;
210 result_h.rowNorms[lclRow] = rowNorm;
213 result.assign (result_h);
219 template<
class SC,
class LO,
class GO,
class NT>
220 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
typename NT::device_type>
222 const bool assumeSymmetric)
224 using KAT = Kokkos::ArithTraits<SC>;
225 using val_type =
typename KAT::val_type;
226 using mag_type =
typename KAT::mag_type;
227 using KAM = Kokkos::ArithTraits<mag_type>;
228 using device_type =
typename NT::device_type;
232 const LO lclNumRows =
static_cast<LO
> (rowMap.getNodeNumElements ());
233 const LO lclNumCols =
static_cast<LO
> (colMap.getNodeNumElements ());
236 (lclNumRows, lclNumCols, assumeSymmetric);
237 auto result_h = result.createMirrorView ();
239 forEachLocalRowMatrixRow<SC, LO, GO, NT> (A,
240 [&] (
const LO lclRow,
241 const Teuchos::ArrayView<LO>& ind,
242 const Teuchos::ArrayView<SC>& val,
243 std::size_t numEnt) {
244 mag_type rowNorm {0.0};
245 val_type diagVal {0.0};
246 const GO gblRow = rowMap.getGlobalElement (lclRow);
248 const GO lclDiagColInd = colMap.getLocalElement (gblRow);
250 for (std::size_t k = 0; k < numEnt; ++k) {
251 const val_type matrixVal = val[k];
252 if (KAT::isInf (matrixVal)) {
253 result_h.foundInf =
true;
255 if (KAT::isNan (matrixVal)) {
256 result_h.foundNan =
true;
258 const mag_type matrixAbsVal = KAT::abs (matrixVal);
259 rowNorm += matrixAbsVal;
260 const LO lclCol = ind[k];
261 if (lclCol == lclDiagColInd) {
264 if (! assumeSymmetric) {
265 result_h.colNorms[lclCol] += matrixAbsVal;
271 if (diagVal == KAT::zero ()) {
272 result_h.foundZeroDiag =
true;
274 if (rowNorm == KAM::zero ()) {
275 result_h.foundZeroRowNorm =
true;
281 result_h.rowDiagonalEntries[lclRow] += diagVal;
282 result_h.rowNorms[lclRow] = rowNorm;
283 if (! assumeSymmetric &&
284 lclDiagColInd != Tpetra::Details::OrdinalTraits<LO>::invalid ()) {
285 result_h.colDiagonalEntries[lclDiagColInd] += diagVal;
293 template<
class SC,
class LO,
class GO,
class NT>
294 class ComputeLocalRowScaledColumnNorms {
297 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
298 using mag_type =
typename Kokkos::ArithTraits<val_type>::mag_type;
301 ComputeLocalRowScaledColumnNorms (
const Kokkos::View<mag_type*, device_type>& rowScaledColNorms,
302 const Kokkos::View<const mag_type*, device_type>& rowNorms,
303 const crs_matrix_type& A) :
304 rowScaledColNorms_ (rowScaledColNorms),
305 rowNorms_ (rowNorms),
306 A_lcl_ (A.getLocalMatrix ())
309 KOKKOS_INLINE_FUNCTION
void operator () (
const LO lclRow)
const {
310 using KAT = Kokkos::ArithTraits<val_type>;
312 const auto curRow = A_lcl_.rowConst (lclRow);
313 const mag_type rowNorm = rowNorms_[lclRow];
314 const LO numEnt = curRow.length;
315 for (LO k = 0; k < numEnt; ++k) {
316 const mag_type matrixAbsVal = KAT::abs (curRow.value(k));
317 const LO lclCol = curRow.colidx(k);
319 Kokkos::atomic_add (&rowScaledColNorms_[lclCol], matrixAbsVal / rowNorm);
324 run (
const Kokkos::View<mag_type*, device_type>& rowScaledColNorms,
325 const Kokkos::View<const mag_type*, device_type>& rowNorms,
326 const crs_matrix_type& A)
328 using execution_space =
typename device_type::execution_space;
329 using range_type = Kokkos::RangePolicy<execution_space, LO>;
330 using functor_type = ComputeLocalRowScaledColumnNorms<SC, LO, GO, NT>;
332 functor_type functor (rowScaledColNorms, rowNorms, A);
333 const LO lclNumRows =
334 static_cast<LO
> (A.getRowMap ()->getNodeNumElements ());
335 Kokkos::parallel_for (
"computeLocalRowScaledColumnNorms",
336 range_type (0, lclNumRows), functor);
340 Kokkos::View<mag_type*, device_type> rowScaledColNorms_;
341 Kokkos::View<const mag_type*, device_type> rowNorms_;
344 local_matrix_type A_lcl_;
347 template<
class SC,
class LO,
class GO,
class NT>
349 computeLocalRowScaledColumnNorms_CrsMatrix (EquilibrationInfo<
typename Kokkos::ArithTraits<SC>::val_type,
350 typename NT::device_type>& result,
353 using impl_type = ComputeLocalRowScaledColumnNorms<SC, LO, GO, NT>;
354 impl_type::run (result.rowScaledColNorms, result.rowNorms, A);
357 template<
class SC,
class LO,
class GO,
class NT>
359 computeLocalRowScaledColumnNorms (EquilibrationInfo<
typename Kokkos::ArithTraits<SC>::val_type,
360 typename NT::device_type>& result,
364 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
365 using mag_type =
typename Kokkos::ArithTraits<val_type>::mag_type;
366 using device_type =
typename NT::device_type;
369 TEUCHOS_TEST_FOR_EXCEPTION
370 (colMapPtr.get () ==
nullptr, std::invalid_argument,
371 "computeLocalRowScaledColumnNorms: "
372 "Input matrix A must have a nonnull column Map.");
373 const LO lclNumCols =
static_cast<LO
> (colMapPtr->getNodeNumElements ());
374 if (static_cast<std::size_t> (result.rowScaledColNorms.extent (0)) !=
375 static_cast<std::size_t> (lclNumCols)) {
376 result.rowScaledColNorms =
377 Kokkos::View<mag_type*, device_type> (
"rowScaledColNorms", lclNumCols);
380 const crs_matrix_type* A_crs =
dynamic_cast<const crs_matrix_type*
> (&A);
381 if (A_crs ==
nullptr) {
385 computeLocalRowScaledColumnNorms_CrsMatrix (result, *A_crs);
391 template<
class SC,
class LO,
class GO,
class NT>
392 class ComputeLocalRowOneNorms {
394 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
395 using equib_info_type = EquilibrationInfo<val_type, typename NT::device_type>;
396 using local_matrix_type =
397 typename ::Tpetra::CrsMatrix<SC, LO, GO, NT>::local_matrix_type;
398 using local_map_type = typename ::Tpetra::Map<LO, GO, NT>::local_map_type;
400 ComputeLocalRowOneNorms (
const equib_info_type& equib,
401 const local_matrix_type& A_lcl,
402 const local_map_type& rowMap,
403 const local_map_type& colMap) :
416 using value_type = int;
418 KOKKOS_INLINE_FUNCTION
void init (value_type& dst)
const
423 KOKKOS_INLINE_FUNCTION
void
424 join (
volatile value_type& dst,
425 const volatile value_type& src)
const
430 KOKKOS_INLINE_FUNCTION
void
431 operator () (
const LO lclRow, value_type& dst)
const
433 using KAT = Kokkos::ArithTraits<val_type>;
434 using mag_type =
typename KAT::mag_type;
435 using KAM = Kokkos::ArithTraits<mag_type>;
437 const GO gblRow = rowMap_.getGlobalElement (lclRow);
439 const GO lclDiagColInd = colMap_.getLocalElement (gblRow);
441 const auto curRow = A_lcl_.rowConst (lclRow);
442 const LO numEnt = curRow.length;
444 mag_type rowNorm {0.0};
445 val_type diagVal {0.0};
447 for (LO k = 0; k < numEnt; ++k) {
448 const val_type matrixVal = curRow.value (k);
449 if (KAT::isInf (matrixVal)) {
452 if (KAT::isNan (matrixVal)) {
455 const mag_type matrixAbsVal = KAT::abs (matrixVal);
456 rowNorm += matrixAbsVal;
457 const LO lclCol = curRow.colidx (k);
458 if (lclCol == lclDiagColInd) {
459 diagVal = curRow.value (k);
465 if (diagVal == KAT::zero ()) {
468 if (rowNorm == KAM::zero ()) {
471 equib_.rowDiagonalEntries[lclRow] = diagVal;
472 equib_.rowNorms[lclRow] = rowNorm;
476 equib_info_type equib_;
477 local_matrix_type A_lcl_;
478 local_map_type rowMap_;
479 local_map_type colMap_;
484 template<
class SC,
class LO,
class GO,
class NT>
485 class ComputeLocalRowAndColumnOneNorms {
487 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
488 using equib_info_type = EquilibrationInfo<val_type, typename NT::device_type>;
489 using local_matrix_type = typename ::Tpetra::CrsMatrix<SC, LO, GO, NT>::local_matrix_type;
490 using local_map_type = typename ::Tpetra::Map<LO, GO, NT>::local_map_type;
493 ComputeLocalRowAndColumnOneNorms (
const equib_info_type& equib,
494 const local_matrix_type& A_lcl,
495 const local_map_type& rowMap,
496 const local_map_type& colMap) :
509 using value_type = int;
511 KOKKOS_INLINE_FUNCTION
void init (value_type& dst)
const
516 KOKKOS_INLINE_FUNCTION
void
517 join (
volatile value_type& dst,
518 const volatile value_type& src)
const
523 KOKKOS_INLINE_FUNCTION
void
524 operator () (
const LO lclRow, value_type& dst)
const
526 using KAT = Kokkos::ArithTraits<val_type>;
527 using mag_type =
typename KAT::mag_type;
528 using KAM = Kokkos::ArithTraits<mag_type>;
530 const GO gblRow = rowMap_.getGlobalElement (lclRow);
532 const GO lclDiagColInd = colMap_.getLocalElement (gblRow);
534 const auto curRow = A_lcl_.rowConst (lclRow);
535 const LO numEnt = curRow.length;
537 mag_type rowNorm {0.0};
538 val_type diagVal {0.0};
540 for (LO k = 0; k < numEnt; ++k) {
541 const val_type matrixVal = curRow.value (k);
542 if (KAT::isInf (matrixVal)) {
545 if (KAT::isNan (matrixVal)) {
548 const mag_type matrixAbsVal = KAT::abs (matrixVal);
549 rowNorm += matrixAbsVal;
550 const LO lclCol = curRow.colidx (k);
551 if (lclCol == lclDiagColInd) {
552 diagVal = curRow.value (k);
554 if (! equib_.assumeSymmetric) {
555 Kokkos::atomic_add (&(equib_.colNorms[lclCol]), matrixAbsVal);
561 if (diagVal == KAT::zero ()) {
564 if (rowNorm == KAM::zero ()) {
571 equib_.rowDiagonalEntries[lclRow] = diagVal;
572 equib_.rowNorms[lclRow] = rowNorm;
573 if (! equib_.assumeSymmetric &&
574 lclDiagColInd != Tpetra::Details::OrdinalTraits<LO>::invalid ()) {
577 equib_.colDiagonalEntries[lclDiagColInd] += diagVal;
582 equib_info_type equib_;
583 local_matrix_type A_lcl_;
584 local_map_type rowMap_;
585 local_map_type colMap_;
590 template<
class SC,
class LO,
class GO,
class NT>
591 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
typename NT::device_type>
594 using execution_space =
typename NT::device_type::execution_space;
595 using range_type = Kokkos::RangePolicy<execution_space, LO>;
596 using functor_type = ComputeLocalRowOneNorms<SC, LO, GO, NT>;
597 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
598 using device_type =
typename NT::device_type;
601 const LO lclNumRows =
static_cast<LO
> (A.
getRowMap ()->getNodeNumElements ());
602 const LO lclNumCols = 0;
603 constexpr
bool assumeSymmetric =
false;
604 equib_info_type equib (lclNumRows, lclNumCols, assumeSymmetric);
610 Kokkos::parallel_reduce (
"computeLocalRowOneNorms",
611 range_type (0, lclNumRows), functor,
613 equib.foundInf = (result & 1) != 0;
614 equib.foundNan = (result & 2) != 0;
615 equib.foundZeroDiag = (result & 4) != 0;
616 equib.foundZeroRowNorm = (result & 8) != 0;
622 template<
class SC,
class LO,
class GO,
class NT>
623 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
typename NT::device_type>
625 const bool assumeSymmetric)
627 using execution_space =
typename NT::device_type::execution_space;
628 using range_type = Kokkos::RangePolicy<execution_space, LO>;
629 using functor_type = ComputeLocalRowAndColumnOneNorms<SC, LO, GO, NT>;
630 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
631 using device_type =
typename NT::device_type;
634 const LO lclNumRows =
static_cast<LO
> (A.
getRowMap ()->getNodeNumElements ());
635 const LO lclNumCols =
static_cast<LO
> (A.
getColMap ()->getNodeNumElements ());
636 equib_info_type equib (lclNumRows, lclNumCols, assumeSymmetric);
642 Kokkos::parallel_reduce (
"computeLocalRowAndColumnOneNorms",
643 range_type (0, lclNumRows), functor,
645 equib.foundInf = (result & 1) != 0;
646 equib.foundNan = (result & 2) != 0;
647 equib.foundZeroDiag = (result & 4) != 0;
648 equib.foundZeroRowNorm = (result & 8) != 0;
656 template<
class SC,
class LO,
class GO,
class NT>
657 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
658 typename NT::device_type>
662 const crs_matrix_type* A_crs =
dynamic_cast<const crs_matrix_type*
> (&A);
664 if (A_crs ==
nullptr) {
693 template<
class SC,
class LO,
class GO,
class NT>
694 EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
typename NT::device_type>
696 const bool assumeSymmetric)
699 const crs_matrix_type* A_crs =
dynamic_cast<const crs_matrix_type*
> (&A);
701 if (A_crs ==
nullptr) {
709 template<
class SC,
class LO,
class GO,
class NT>
713 return X.template getLocalView<typename NT::device_type::memory_space> ();
716 template<
class SC,
class LO,
class GO,
class NT>
718 const LO whichColumn)
719 -> decltype (Kokkos::subview (getLocalView_2d (X), Kokkos::ALL (), whichColumn))
721 if (X.isConstantStride ()) {
722 return Kokkos::subview (getLocalView_2d (X), Kokkos::ALL (), whichColumn);
725 auto X_whichColumn = X.getVector (whichColumn);
726 return Kokkos::subview (getLocalView_2d (*X_whichColumn), Kokkos::ALL (), 0);
730 template<
class SC,
class LO,
class GO,
class NT,
class ViewValueType>
733 const LO whichColumn,
734 const Kokkos::View<ViewValueType*, typename NT::device_type>& view)
736 using dev_memory_space =
typename NT::device_type::memory_space;
738 X.template modify<dev_memory_space> ();
739 auto X_lcl = getLocalView_1d (X, whichColumn);
743 template<
class SC,
class LO,
class GO,
class NT,
class ViewValueType>
745 copyMultiVectorColumnInto1DView (
const Kokkos::View<ViewValueType*, typename NT::device_type>& view,
747 const LO whichColumn)
749 using dev_memory_space =
typename NT::device_type::memory_space;
750 X.template sync<dev_memory_space> ();
751 auto X_lcl = getLocalView_1d (X, whichColumn);
755 template<
class OneDViewType,
class IndexType>
758 static_assert (OneDViewType::Rank == 1,
759 "OneDViewType must be a rank-1 Kokkos::View.");
760 static_assert (std::is_integral<IndexType>::value,
761 "IndexType must be a built-in integer type.");
762 FindZero (
const OneDViewType& x) : x_ (x) {}
765 KOKKOS_INLINE_FUNCTION
void
766 operator () (
const IndexType i,
int& result)
const {
767 using val_type =
typename OneDViewType::non_const_value_type;
768 result = (x_(i) == Kokkos::ArithTraits<val_type>::zero ()) ? 1 : result;
774 template<
class OneDViewType>
775 bool findZero (
const OneDViewType& x)
777 using view_type =
typename OneDViewType::const_type;
778 using execution_space =
typename view_type::execution_space;
779 using size_type =
typename view_type::size_type;
780 using functor_type = FindZero<view_type, size_type>;
782 Kokkos::RangePolicy<execution_space, size_type> range (0, x.extent (0));
783 range.set (Kokkos::ChunkSize (500));
786 Kokkos::parallel_reduce (
"findZero", range, functor_type (x), foundZero);
787 return foundZero == 1;
790 template<
class SC,
class LO,
class GO,
class NT>
792 globalizeRowOneNorms (EquilibrationInfo<
typename Kokkos::ArithTraits<SC>::val_type,
793 typename NT::device_type>& equib,
799 TEUCHOS_TEST_FOR_EXCEPTION
800 (G.get () ==
nullptr, std::invalid_argument,
801 "globalizeRowOneNorms: Input RowMatrix A must have a nonnull graph "
802 "(that is, getGraph() must return nonnull).");
803 TEUCHOS_TEST_FOR_EXCEPTION
804 (! G->isFillComplete (), std::invalid_argument,
805 "globalizeRowOneNorms: Input CrsGraph G must be fillComplete.");
807 auto exp = G->getExporter ();
808 if (! exp.is_null ()) {
818 mv_type rowMapMV (G->getRowMap (), 2,
false);
820 copy1DViewIntoMultiVectorColumn (rowMapMV, 0, equib.rowNorms);
821 copy1DViewIntoMultiVectorColumn (rowMapMV, 1, equib.rowDiagonalEntries);
823 mv_type rangeMapMV (G->getRangeMap (), 2,
true);
827 copyMultiVectorColumnInto1DView (equib.rowNorms, rowMapMV, 0);
828 copyMultiVectorColumnInto1DView (equib.rowDiagonalEntries, rowMapMV, 1);
833 equib.foundZeroDiag = findZero (equib.rowDiagonalEntries);
834 equib.foundZeroRowNorm = findZero (equib.rowNorms);
837 constexpr
int allReduceCount = 4;
838 int lclNaughtyMatrix[allReduceCount];
839 lclNaughtyMatrix[0] = equib.foundInf ? 1 : 0;
840 lclNaughtyMatrix[1] = equib.foundNan ? 1 : 0;
841 lclNaughtyMatrix[2] = equib.foundZeroDiag ? 1 : 0;
842 lclNaughtyMatrix[3] = equib.foundZeroRowNorm ? 1 : 0;
844 using Teuchos::outArg;
845 using Teuchos::REDUCE_MAX;
846 using Teuchos::reduceAll;
847 auto comm = G->getComm ();
848 int gblNaughtyMatrix[allReduceCount];
849 reduceAll<int, int> (*comm, REDUCE_MAX, allReduceCount,
850 lclNaughtyMatrix, gblNaughtyMatrix);
852 equib.foundInf = gblNaughtyMatrix[0] == 1;
853 equib.foundNan = gblNaughtyMatrix[1] == 1;
854 equib.foundZeroDiag = gblNaughtyMatrix[2] == 1;
855 equib.foundZeroRowNorm = gblNaughtyMatrix[3] == 1;
858 template<
class SC,
class LO,
class GO,
class NT>
860 globalizeColumnOneNorms (EquilibrationInfo<
typename Kokkos::ArithTraits<SC>::val_type,
861 typename NT::device_type>& equib,
863 const bool assumeSymmetric)
865 using val_type =
typename Kokkos::ArithTraits<SC>::val_type;
866 using mag_type =
typename Kokkos::ArithTraits<val_type>::mag_type;
868 using device_type =
typename NT::device_type;
871 TEUCHOS_TEST_FOR_EXCEPTION
872 (G.get () ==
nullptr, std::invalid_argument,
873 "globalizeColumnOneNorms: Input RowMatrix A must have a nonnull graph "
874 "(that is, getGraph() must return nonnull).");
875 TEUCHOS_TEST_FOR_EXCEPTION
876 (! G->isFillComplete (), std::invalid_argument,
877 "globalizeColumnOneNorms: Input CrsGraph G must be fillComplete.");
879 auto imp = G->getImporter ();
880 if (assumeSymmetric) {
881 const LO numCols = 2;
885 mv_type rowNorms_domMap (G->getDomainMap (), numCols,
false);
886 const bool rowMapSameAsDomainMap = G->getRowMap ()->isSameAs (* (G->getDomainMap ()));
887 if (rowMapSameAsDomainMap) {
888 copy1DViewIntoMultiVectorColumn (rowNorms_domMap, 0, equib.rowNorms);
889 copy1DViewIntoMultiVectorColumn (rowNorms_domMap, 1, equib.rowDiagonalEntries);
895 mv_type rowNorms_rowMap (G->getRowMap (), numCols,
true);
896 copy1DViewIntoMultiVectorColumn (rowNorms_rowMap, 0, equib.rowNorms);
897 copy1DViewIntoMultiVectorColumn (rowNorms_rowMap, 1, equib.rowDiagonalEntries);
903 std::unique_ptr<mv_type> rowNorms_colMap;
904 if (imp.is_null ()) {
907 std::unique_ptr<mv_type> (
new mv_type (rowNorms_domMap, * (G->getColMap ())));
911 std::unique_ptr<mv_type> (
new mv_type (G->getColMap (), numCols,
true));
916 const LO lclNumCols =
917 static_cast<LO
> (G->getColMap ()->getNodeNumElements ());
918 if (static_cast<LO> (equib.colNorms.extent (0)) != lclNumCols) {
920 Kokkos::View<mag_type*, device_type> (
"colNorms", lclNumCols);
922 if (static_cast<LO> (equib.colDiagonalEntries.extent (0)) != lclNumCols) {
923 equib.colDiagonalEntries =
924 Kokkos::View<val_type*, device_type> (
"colDiagonalEntries", lclNumCols);
929 copyMultiVectorColumnInto1DView (equib.colNorms, *rowNorms_colMap, 0);
930 copyMultiVectorColumnInto1DView (equib.colDiagonalEntries, *rowNorms_colMap, 1);
933 if (! imp.is_null ()) {
934 const LO numCols = 3;
943 mv_type colMapMV (G->getColMap (), numCols,
false);
945 copy1DViewIntoMultiVectorColumn (colMapMV, 0, equib.colNorms);
946 copy1DViewIntoMultiVectorColumn (colMapMV, 1, equib.colDiagonalEntries);
947 copy1DViewIntoMultiVectorColumn (colMapMV, 2, equib.rowScaledColNorms);
949 mv_type domainMapMV (G->getDomainMap (), numCols,
true);
950 domainMapMV.doExport (colMapMV, *imp,
Tpetra::ADD);
953 copyMultiVectorColumnInto1DView (equib.colNorms, colMapMV, 0);
954 copyMultiVectorColumnInto1DView (equib.colDiagonalEntries, colMapMV, 1);
955 copyMultiVectorColumnInto1DView (equib.rowScaledColNorms, colMapMV, 2);
962 template<
class SC,
class LO,
class GO,
class NT>
963 Details::EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
964 typename NT::device_type>
967 TEUCHOS_TEST_FOR_EXCEPTION
969 "computeRowOneNorms: Input matrix A must be fillComplete.");
972 Details::globalizeRowOneNorms (result, A);
976 template<
class SC,
class LO,
class GO,
class NT>
977 Details::EquilibrationInfo<typename Kokkos::ArithTraits<SC>::val_type,
978 typename NT::device_type>
980 const bool assumeSymmetric)
982 TEUCHOS_TEST_FOR_EXCEPTION
984 "computeRowAndColumnOneNorms: Input matrix A must be fillComplete.");
987 Details::globalizeRowOneNorms (result, A);
988 if (! assumeSymmetric) {
992 Details::computeLocalRowScaledColumnNorms (result, A);
994 Details::globalizeColumnOneNorms (result, A, assumeSymmetric);
1006 #define TPETRA_COMPUTEROWANDCOLUMNONENORMS_INSTANT(SC,LO,GO,NT) \
1007 template Details::EquilibrationInfo<Kokkos::ArithTraits<SC>::val_type, NT::device_type> \
1008 computeRowOneNorms (const Tpetra::RowMatrix<SC, LO, GO, NT>& A); \
1010 template Details::EquilibrationInfo<Kokkos::ArithTraits<SC>::val_type, NT::device_type> \
1011 computeRowAndColumnOneNorms (const Tpetra::RowMatrix<SC, LO, GO, NT>& A, \
1012 const bool assumeSymmetric);
1014 #endif // TPETRA_COMPUTEROWANDCOLUMNONENORMS_DEF_HPP
virtual Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > getColMap() const =0
The Map that describes the distribution of columns over processes.
Sparse matrix that presents a row-oriented interface that lets users read or modify entries...
KokkosSparse::CrsMatrix< impl_scalar_type, local_ordinal_type, device_type, void, typename local_graph_type::size_type > local_matrix_type
The specialization of Kokkos::CrsMatrix that represents the part of the sparse matrix on each MPI pro...
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowOneNorms_RowMatrix(const Tpetra::RowMatrix< SC, LO, GO, NT > &A)
Implementation of computeLocalRowOneNorms for a Tpetra::RowMatrix that is NOT a Tpetra::CrsMatrix.
virtual void getLocalRowCopy(LocalOrdinal LocalRow, const Teuchos::ArrayView< LocalOrdinal > &Indices, const Teuchos::ArrayView< Scalar > &Values, size_t &NumEntries) const =0
Get a copy of the given local row's entries.
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowAndColumnOneNorms_RowMatrix(const Tpetra::RowMatrix< SC, LO, GO, NT > &A, const bool assumeSymmetric)
Implementation of computeLocalRowAndColumnOneNorms for a Tpetra::RowMatrix that is NOT a Tpetra::CrsM...
One or more distributed dense vectors.
virtual size_t getNumEntriesInLocalRow(LocalOrdinal localRow) const =0
The current number of entries on the calling process in the specified local row.
virtual Teuchos::RCP< const RowGraph< LocalOrdinal, GlobalOrdinal, Node > > getGraph() const =0
The RowGraph associated with this matrix.
Details::EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeRowOneNorms(const Tpetra::RowMatrix< SC, LO, GO, NT > &A)
Compute global row one-norms ("row sums") of the input sparse matrix A, in a way suitable for one-sid...
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowAndColumnOneNorms(const Tpetra::RowMatrix< SC, LO, GO, NT > &A, const bool assumeSymmetric)
Compute LOCAL row and column one-norms ("row sums" etc.) of the input sparse matrix A...
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowOneNorms_CrsMatrix(const Tpetra::CrsMatrix< SC, LO, GO, NT > &A)
Implementation of computeLocalRowOneNorms for a Tpetra::CrsMatrix.
Details::EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeRowAndColumnOneNorms(const Tpetra::RowMatrix< SC, LO, GO, NT > &A, const bool assumeSymmetric)
Compute global row and column one-norms ("row sums" and "column sums") of the input sparse matrix A...
Declare and define Tpetra::Details::copyConvert, an implementation detail of Tpetra (in particular...
Struct storing results of Tpetra::computeRowAndColumnOneNorms.
void deep_copy(MultiVector< DS, DL, DG, DN > &dst, const MultiVector< SS, SL, SG, SN > &src)
Copy the contents of the MultiVector src into dst.
void computeLocalRowScaledColumnNorms_RowMatrix(EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > &result, const Tpetra::RowMatrix< SC, LO, GO, NT > &A)
For a given Tpetra::RowMatrix that is not a Tpetra::CrsMatrix, assume that result.rowNorms has been computed (and globalized), and compute result.rowScaledColNorms.
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowAndColumnOneNorms_CrsMatrix(const Tpetra::CrsMatrix< SC, LO, GO, NT > &A, const bool assumeSymmetric)
Implementation of computeLocalRowAndColumnOneNorms for a Tpetra::CrsMatrix.
EquilibrationInfo< typename Kokkos::ArithTraits< SC >::val_type, typename NT::device_type > computeLocalRowOneNorms(const Tpetra::RowMatrix< SC, LO, GO, NT > &A)
Compute LOCAL row one-norms ("row sums" etc.) of the input sparse matrix A.
Communication plan for data redistribution from a (possibly) multiply-owned to a uniquely-owned distr...
Sum new values into existing values.
void copyConvert(const OutputViewType &dst, const InputViewType &src)
Copy values from the 1-D Kokkos::View src, to the 1-D Kokkos::View dst, of the same length...
typename Node::device_type device_type
The Kokkos device type.
Replace existing values with new values.
void assign(const EquilibrationInfo< ScalarType, SrcDeviceType > &src)
Deep-copy src into *this.
virtual bool isFillComplete() const =0
Whether fillComplete() has been called.
A read-only, row-oriented interface to a sparse matrix.
local_matrix_type getLocalMatrix() const
The local sparse matrix.
Teuchos::RCP< const map_type > getColMap() const override
The Map that describes the column distribution in this matrix.
virtual Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > getRowMap() const =0
The Map that describes the distribution of rows over processes.
Teuchos::RCP< const map_type > getRowMap() const override
The Map that describes the row distribution in this matrix.