54 #include "NOX_Epetra.H"
55 #include "NOX_Epetra_LinearSystem_Stratimikos.H"
68 #include "EpetraExt_VectorOut.h"
99 "KL-Reduced-Matrix-Free",
108 "Approx-Gauss-Seidel",
110 "Approx-Schur-Complement",
124 MPI_Init(&argc,&argv);
134 int MyPID = globalComm->
MyPID();
141 "This example runs a variety of stochastic Galerkin solvers.\n");
144 CLP.
setOption(
"num_mesh", &n,
"Number of mesh points in each direction");
146 bool symmetric =
false;
147 CLP.
setOption(
"symmetric",
"unsymmetric", &symmetric,
148 "Symmetric discretization");
150 int num_spatial_procs = -1;
151 CLP.
setOption(
"num_spatial_procs", &num_spatial_procs,
"Number of spatial processors (set -1 for all available procs)");
153 bool rebalance_stochastic_graph =
false;
154 CLP.
setOption(
"rebalance",
"no-rebalance", &rebalance_stochastic_graph,
155 "Rebalance parallel stochastic graph (requires Isorropia)");
160 "Random field type");
166 CLP.
setOption(
"std_dev", &sigma,
"Standard deviation");
168 double weightCut = 1.0;
169 CLP.
setOption(
"weight_cut", &weightCut,
"Weight cut");
172 CLP.
setOption(
"num_kl", &num_KL,
"Number of KL terms");
175 CLP.
setOption(
"order", &p,
"Polynomial order");
177 bool normalize_basis =
true;
178 CLP.
setOption(
"normalize",
"unnormalize", &normalize_basis,
179 "Normalize PC basis");
182 CLP.
setOption(
"sg_solver", &solve_method,
187 CLP.
setOption(
"outer_krylov_method", &outer_krylov_method,
189 "Outer Krylov method (for Krylov-based SG solver)");
192 CLP.
setOption(
"outer_krylov_solver", &outer_krylov_solver,
194 "Outer linear solver");
196 double outer_tol = 1e-12;
197 CLP.
setOption(
"outer_tol", &outer_tol,
"Outer solver tolerance");
199 int outer_its = 1000;
200 CLP.
setOption(
"outer_its", &outer_its,
"Maximum outer iterations");
203 CLP.
setOption(
"inner_krylov_method", &inner_krylov_method,
205 "Inner Krylov method (for G-S, Jacobi, etc...)");
208 CLP.
setOption(
"inner_krylov_solver", &inner_krylov_solver,
210 "Inner linear solver");
212 double inner_tol = 3e-13;
213 CLP.
setOption(
"inner_tol", &inner_tol,
"Inner solver tolerance");
215 int inner_its = 1000;
216 CLP.
setOption(
"inner_its", &inner_its,
"Maximum inner iterations");
219 CLP.
setOption(
"sg_operator_method", &opMethod,
224 CLP.
setOption(
"sg_prec_method", &precMethod,
226 "Preconditioner method");
228 double gs_prec_tol = 1e-1;
229 CLP.
setOption(
"gs_prec_tol", &gs_prec_tol,
"Gauss-Seidel preconditioner tolerance");
232 CLP.
setOption(
"gs_prec_its", &gs_prec_its,
"Maximum Gauss-Seidel preconditioner iterations");
234 CLP.
parse( argc, argv );
237 std::cout <<
"Summary of command line options:" << std::endl
238 <<
"\tnum_mesh = " << n << std::endl
239 <<
"\tsymmetric = " << symmetric << std::endl
240 <<
"\tnum_spatial_procs = " << num_spatial_procs << std::endl
241 <<
"\trebalance = " << rebalance_stochastic_graph
245 <<
"\tmean = " << mean << std::endl
246 <<
"\tstd_dev = " << sigma << std::endl
247 <<
"\tweight_cut = " << weightCut << std::endl
248 <<
"\tnum_kl = " << num_KL << std::endl
249 <<
"\torder = " << p << std::endl
250 <<
"\tnormalize_basis = " << normalize_basis << std::endl
253 <<
"\touter_krylov_method = "
255 <<
"\touter_krylov_solver = "
257 <<
"\touter_tol = " << outer_tol << std::endl
258 <<
"\touter_its = " << outer_its << std::endl
259 <<
"\tinner_krylov_method = "
261 <<
"\tinner_krylov_solver = "
263 <<
"\tinner_tol = " << inner_tol << std::endl
264 <<
"\tinner_its = " << inner_its << std::endl
265 <<
"\tsg_operator_method = " <<
sg_op_names[opMethod]
269 <<
"\tgs_prec_tol = " << gs_prec_tol << std::endl
270 <<
"\tgs_prec_its = " << gs_prec_its << std::endl;
273 bool nonlinear_expansion =
false;
275 nonlinear_expansion =
false;
277 nonlinear_expansion =
true;
285 for (
int i=0; i<num_KL; i++)
288 else if (randField ==
RYS)
296 int sz = basis->size();
298 if (nonlinear_expansion)
299 Cijk = basis->computeTripleProductTensor();
301 Cijk = basis->computeLinearTripleProductTensor();
306 std::cout <<
"Stochastic Galerkin expansion size = " << sz << std::endl;
310 parallelParams.
set(
"Number of Spatial Processors", num_spatial_procs);
311 parallelParams.
set(
"Rebalance Stochastic Graph",
312 rebalance_stochastic_graph);
324 mean, basis, nonlinear_expansion,
332 noxParams->
set(
"Nonlinear Solver",
"Line Search Based");
336 printParams.
set(
"MyPID", MyPID);
337 printParams.
set(
"Output Precision", 3);
338 printParams.
set(
"Output Processor", 0);
339 printParams.
set(
"Output Information",
340 NOX::Utils::OuterIteration +
341 NOX::Utils::OuterIterationStatusTest +
342 NOX::Utils::InnerIteration +
344 NOX::Utils::Details +
345 NOX::Utils::LinearSolverDetails +
346 NOX::Utils::Warning +
350 NOX::Utils utils(printParams);
354 searchParams.
set(
"Method",
"Full Step");
358 dirParams.
set(
"Method",
"Newton");
360 newtonParams.
set(
"Forcing Term Method",
"Constant");
367 newtonParams.
sublist(
"Stratimikos Linear Solver");
371 stratLinSolParams.
sublist(
"Stratimikos");
375 statusParams.
set(
"Test Type",
"Combo");
376 statusParams.
set(
"Number of Tests", 2);
377 statusParams.
set(
"Combo Type",
"OR");
379 normF.
set(
"Test Type",
"NormF");
380 normF.
set(
"Tolerance", outer_tol);
381 normF.
set(
"Scale Type",
"Scaled");
383 maxIters.
set(
"Test Type",
"MaxIters");
384 maxIters.
set(
"Maximum Iterations", 1);
388 Teuchos::rcp(
new NOX::Epetra::ModelEvaluatorInterface(model));
396 det_printParams.
set(
"MyPID", MyPID);
397 det_printParams.
set(
"Output Precision", 3);
398 det_printParams.
set(
"Output Processor", 0);
399 det_printParams.
set(
"Output Information", NOX::Utils::Error);
403 det_lsParams.
sublist(
"Stratimikos");
404 if (inner_krylov_solver ==
AZTECOO) {
405 det_stratParams.
set(
"Linear Solver Type",
"AztecOO");
407 det_stratParams.
sublist(
"Linear Solver Types").sublist(
"AztecOO").sublist(
"Forward Solve");
409 aztecOOParams.
sublist(
"AztecOO Settings");
410 if (inner_krylov_method ==
GMRES) {
411 aztecOOSettings.
set(
"Aztec Solver",
"GMRES");
413 else if (inner_krylov_method ==
CG) {
414 aztecOOSettings.
set(
"Aztec Solver",
"CG");
416 aztecOOSettings.
set(
"Output Frequency", 0);
417 aztecOOSettings.
set(
"Size of Krylov Subspace", 100);
418 aztecOOParams.
set(
"Max Iterations", inner_its);
419 aztecOOParams.
set(
"Tolerance", inner_tol);
421 det_stratParams.
sublist(
"Linear Solver Types").sublist(
"AztecOO").sublist(
"VerboseObject");
422 verbParams.
set(
"Verbosity Level",
"none");
424 else if (inner_krylov_solver ==
BELOS) {
425 det_stratParams.
set(
"Linear Solver Type",
"Belos");
427 det_stratParams.
sublist(
"Linear Solver Types").sublist(
"Belos");
429 if (inner_krylov_method ==
GMRES || inner_krylov_method ==
FGMRES) {
430 belosParams.
set(
"Solver Type",
"Block GMRES");
432 &(belosParams.
sublist(
"Solver Types").sublist(
"Block GMRES"));
433 if (inner_krylov_method ==
FGMRES)
434 belosSolverParams->
set(
"Flexible Gmres",
true);
436 else if (inner_krylov_method ==
CG) {
437 belosParams.
set(
"Solver Type",
"Block CG");
439 &(belosParams.
sublist(
"Solver Types").sublist(
"Block CG"));
441 else if (inner_krylov_method ==
RGMRES) {
442 belosParams.
set(
"Solver Type",
"GCRODR");
444 &(belosParams.
sublist(
"Solver Types").sublist(
"GCRODR"));
446 belosSolverParams->
set(
"Convergence Tolerance", inner_tol);
447 belosSolverParams->
set(
"Maximum Iterations", inner_its);
448 belosSolverParams->
set(
"Output Frequency",0);
449 belosSolverParams->
set(
"Output Style",1);
450 belosSolverParams->
set(
"Verbosity",0);
452 verbParams.
set(
"Verbosity Level",
"none");
454 det_stratParams.
set(
"Preconditioner Type",
"ML");
456 det_stratParams.
sublist(
"Preconditioner Types").sublist(
"ML").sublist(
"ML Settings");
457 ML_Epetra::SetDefaults(
"SA", det_ML);
458 det_ML.
set(
"ML output", 0);
459 det_ML.
set(
"max levels",5);
460 det_ML.
set(
"increasing or decreasing",
"increasing");
461 det_ML.
set(
"aggregation: type",
"Uncoupled");
462 det_ML.
set(
"smoother: type",
"ML symmetric Gauss-Seidel");
463 det_ML.
set(
"smoother: sweeps",2);
464 det_ML.
set(
"smoother: pre or post",
"both");
465 det_ML.
set(
"coarse: max size", 200);
466 #ifdef HAVE_ML_AMESOS
467 det_ML.
set(
"coarse: type",
"Amesos-KLU");
469 det_ML.
set(
"coarse: type",
"Jacobi");
473 det_printParams, det_lsParams, det_iJac,
480 sgParams->
sublist(
"SG Operator");
482 sgParams->
sublist(
"SG Preconditioner");
484 if (!nonlinear_expansion) {
485 sgParams->
set(
"Parameter Expansion Type",
"Linear");
486 sgParams->
set(
"Jacobian Expansion Type",
"Linear");
489 sgOpParams.
set(
"Operator Method",
"Matrix Free");
491 sgOpParams.
set(
"Operator Method",
"KL Matrix Free");
493 sgOpParams.
set(
"Operator Method",
"KL Reduced Matrix Free");
495 sgOpParams.
set(
"Number of KL Terms", num_KL);
497 sgOpParams.
set(
"Number of KL Terms", basis->size());
498 sgOpParams.
set(
"KL Tolerance", outer_tol);
499 sgOpParams.
set(
"Sparse 3 Tensor Drop Tolerance", outer_tol);
500 sgOpParams.
set(
"Do Error Tests",
true);
503 sgOpParams.
set(
"Operator Method",
"Fully Assembled");
506 "Error! Unknown operator method " << opMethod
507 <<
"." << std::endl);
508 if (precMethod ==
MEAN) {
509 sgPrecParams.
set(
"Preconditioner Method",
"Mean-based");
510 sgPrecParams.
set(
"Mean Preconditioner Type",
"ML");
512 sgPrecParams.
sublist(
"Mean Preconditioner Parameters");
515 else if(precMethod ==
GS) {
516 sgPrecParams.
set(
"Preconditioner Method",
"Gauss-Seidel");
517 sgPrecParams.
sublist(
"Deterministic Solver Parameters") = det_lsParams;
518 sgPrecParams.
set(
"Deterministic Solver", det_linsys);
519 sgPrecParams.
set(
"Max Iterations", gs_prec_its);
520 sgPrecParams.
set(
"Tolerance", gs_prec_tol);
522 else if (precMethod ==
AGS) {
523 sgPrecParams.
set(
"Preconditioner Method",
"Approximate Gauss-Seidel");
524 if (outer_krylov_method ==
CG)
525 sgPrecParams.
set(
"Symmetric Gauss-Seidel",
true);
526 sgPrecParams.
set(
"Mean Preconditioner Type",
"ML");
528 sgPrecParams.
sublist(
"Mean Preconditioner Parameters");
531 else if (precMethod ==
AJ) {
532 sgPrecParams.
set(
"Preconditioner Method",
"Approximate Jacobi");
533 sgPrecParams.
set(
"Mean Preconditioner Type",
"ML");
535 sgPrecParams.
sublist(
"Mean Preconditioner Parameters");
538 sgPrecParams.
sublist(
"Jacobi SG Operator");
539 jacobiOpParams.
set(
"Only Use Linear Terms",
true);
541 else if (precMethod ==
ASC) {
542 sgPrecParams.
set(
"Preconditioner Method",
"Approximate Schur Complement");
543 sgPrecParams.
set(
"Mean Preconditioner Type",
"ML");
545 sgPrecParams.
sublist(
"Mean Preconditioner Parameters");
548 else if (precMethod ==
KP) {
549 sgPrecParams.
set(
"Preconditioner Method",
"Kronecker Product");
550 sgPrecParams.
set(
"Only Use Linear Terms",
true);
551 sgPrecParams.
set(
"Mean Preconditioner Type",
"ML");
553 sgPrecParams.
sublist(
"Mean Preconditioner Parameters");
554 meanPrecParams = det_ML;
555 sgPrecParams.
set(
"G Preconditioner Type",
"Ifpack");
557 sgPrecParams.
sublist(
"G Preconditioner Parameters");
558 if (outer_krylov_method ==
GMRES || outer_krylov_method ==
FGMRES)
559 GPrecParams.
set(
"Ifpack Preconditioner",
"ILUT");
560 if (outer_krylov_method ==
CG)
561 GPrecParams.
set(
"Ifpack Preconditioner",
"ICT");
562 GPrecParams.
set(
"Overlap", 1);
563 GPrecParams.
set(
"fact: drop tolerance", 1e-4);
564 GPrecParams.
set(
"fact: ilut level-of-fill", 1.0);
565 GPrecParams.
set(
"schwarz: combine mode",
"Add");
567 else if (precMethod ==
NONE) {
568 sgPrecParams.
set(
"Preconditioner Method",
"None");
572 "Error! Unknown preconditioner method " << precMethod
573 <<
"." << std::endl);
578 expansion, sg_parallel_data,
580 EpetraExt::ModelEvaluator::InArgs sg_inArgs = sg_model->
createInArgs();
581 EpetraExt::ModelEvaluator::OutArgs sg_outArgs =
589 basis->evaluateBases(point, basis_vals);
592 for (
int i=0; i<num_KL; i++) {
593 sg_p_init->
term(i,0)[i] = 0.0;
594 sg_p_init->
term(i,1)[i] = 1.0 / basis_vals[i+1];
601 sg_x_init->
init(0.0);
606 Teuchos::rcp(
new NOX::Epetra::ModelEvaluatorInterface(sg_model));
620 sg_outArgs.supports(EpetraExt::ModelEvaluator::OUT_ARG_WPrec);
625 iPrec = nox_interface;
627 stratParams.
set(
"Preconditioner Type",
"None");
628 if (outer_krylov_solver ==
AZTECOO) {
629 stratParams.
set(
"Linear Solver Type",
"AztecOO");
631 stratParams.
sublist(
"Linear Solver Types").sublist(
"AztecOO").sublist(
"Forward Solve");
633 aztecOOParams.
sublist(
"AztecOO Settings");
634 if (outer_krylov_method ==
GMRES) {
635 aztecOOSettings.
set(
"Aztec Solver",
"GMRES");
637 else if (outer_krylov_method ==
CG) {
638 aztecOOSettings.
set(
"Aztec Solver",
"CG");
640 aztecOOSettings.
set(
"Output Frequency", 1);
641 aztecOOSettings.
set(
"Size of Krylov Subspace", 100);
642 aztecOOParams.
set(
"Max Iterations", outer_its);
643 aztecOOParams.
set(
"Tolerance", outer_tol);
644 stratLinSolParams.
set(
"Preconditioner",
"User Defined");
648 printParams, stratLinSolParams, iJac, A, iPrec, M,
653 printParams, stratLinSolParams, iJac, A, *u));
655 else if (outer_krylov_solver ==
BELOS){
656 stratParams.
set(
"Linear Solver Type",
"Belos");
658 stratParams.
sublist(
"Linear Solver Types").sublist(
"Belos");
660 if (outer_krylov_method ==
GMRES || outer_krylov_method ==
FGMRES) {
661 belosParams.
set(
"Solver Type",
"Block GMRES");
663 &(belosParams.
sublist(
"Solver Types").sublist(
"Block GMRES"));
664 if (outer_krylov_method ==
FGMRES)
665 belosSolverParams->
set(
"Flexible Gmres",
true);
667 else if (outer_krylov_method ==
CG) {
668 belosParams.
set(
"Solver Type",
"Block CG");
670 &(belosParams.
sublist(
"Solver Types").sublist(
"Block CG"));
672 else if (inner_krylov_method ==
RGMRES) {
673 belosParams.
set(
"Solver Type",
"GCRODR");
675 &(belosParams.
sublist(
"Solver Types").sublist(
"GCRODR"));
677 belosSolverParams->
set(
"Convergence Tolerance", outer_tol);
678 belosSolverParams->
set(
"Maximum Iterations", outer_its);
679 belosSolverParams->
set(
"Output Frequency",1);
680 belosSolverParams->
set(
"Output Style",1);
681 belosSolverParams->
set(
"Verbosity",33);
682 stratLinSolParams.
set(
"Preconditioner",
"User Defined");
686 printParams, stratLinSolParams, iJac, A, iPrec, M,
691 printParams, stratLinSolParams, iJac, A, *u));
695 else if (solve_method==
SG_GS) {
696 lsParams.
sublist(
"Deterministic Solver Parameters") = det_lsParams;
697 lsParams.
set(
"Max Iterations", outer_its);
698 lsParams.
set(
"Tolerance", outer_tol);
701 printParams, lsParams, det_linsys, iReq, iJac,
702 basis, sg_parallel_data, A, base_map, sg_map));
705 lsParams.
sublist(
"Deterministic Solver Parameters") = det_lsParams;
706 lsParams.
set(
"Max Iterations", outer_its);
707 lsParams.
set(
"Tolerance", outer_tol);
709 lsParams.
sublist(
"Jacobi SG Operator");
710 jacobiOpParams.
set(
"Only Use Linear Terms",
true);
713 printParams, lsParams, det_linsys, iReq, iJac,
714 basis, sg_parallel_data, A, base_map, sg_map));
719 Teuchos::rcp(
new NOX::Epetra::Group(printParams, iReq, *u, linsys));
723 NOX::StatusTest::buildStatusTests(statusParams, utils);
727 NOX::Solver::buildSolver(grp, statusTests, noxParams);
730 NOX::StatusTest::StatusType status;
733 status = solver->solve();
737 const NOX::Epetra::Group& finalGroup =
738 dynamic_cast<const NOX::Epetra::Group&
>(solver->getSolutionGroup());
740 (
dynamic_cast<const NOX::Epetra::Vector&
>(finalGroup.getX())).getEpetraVector();
743 EpetraExt::VectorToMatrixMarketFile(
"nox_solver_stochastic_solution.mm",
753 EpetraExt::VectorToMatrixMarketFile(
"mean_gal.mm", mean);
754 EpetraExt::VectorToMatrixMarketFile(
"std_dev_gal.mm", std_dev);
760 sg_inArgs.set_p(1, sg_p);
762 sg_outArgs.set_g(0, sg_g);
763 sg_model->
evalModel(sg_inArgs, sg_outArgs);
772 std::cout.precision(16);
776 std::cout << std::endl;
777 std::cout <<
"Response Mean = " << std::endl << g_mean << std::endl;
778 std::cout <<
"Response Std. Dev. = " << std::endl << g_std_dev << std::endl;
780 if (status == NOX::StatusTest::Converged && MyPID == 0)
781 utils.out() <<
"Example Passed!" << std::endl;
790 catch (std::exception& e) {
791 std::cout << e.what() << std::endl;
793 catch (std::string& s) {
794 std::cout << s << std::endl;
797 std::cout << s << std::endl;
800 std::cout <<
"Caught unknown exception!" << std::endl;
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_x_sg(Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const
Create vector orthog poly using x map and owned sg map.
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_p_sg(int l, Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const
Create vector orthog poly using p map.
Teuchos::RCP< const Epetra_Vector > get_x_init() const
Return initial solution.
Teuchos::RCP< const Epetra_Map > get_x_map() const
Return solution vector map.
#define TEUCHOS_FUNC_TIME_MONITOR(FUNCNAME)
Hermite polynomial basis.
const Krylov_Method krylov_method_values[]
void computeStandardDeviation(Epetra_Vector &v) const
Compute standard deviation.
Teuchos::RCP< const Epetra_Map > get_g_map(int l) const
Return response map.
Teuchos::RCP< const EpetraExt::MultiComm > getMultiComm() const
Get global comm.
double uniform_weight(const double &x)
void evalModel(const InArgs &inArgs, const OutArgs &outArgs) const
Evaluate model on InArgs.
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
void computeMean(Epetra_Vector &v) const
Compute mean.
void init(const value_type &val)
Initialize coefficients.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
const SG_Prec sg_prec_values[]
RCP< ParameterList > sublist(const RCP< ParameterList > ¶mList, const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
const char * sg_op_names[]
const char * krylov_solver_names[]
virtual int MyPID() const =0
Nonlinear, stochastic Galerkin ModelEvaluator.
OutArgs createOutArgs() const
Create OutArgs.
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_g_sg(int l, Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const
Create vector orthog poly using g map.
ModelEvaluator for a linear 2-D diffusion problem.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
const int num_krylov_method
static void summarize(Ptr< const Comm< int > > comm, std::ostream &out=std::cout, const bool alwaysWriteLocal=false, const bool writeGlobalStats=true, const bool writeZeroTimers=true, const ECounterSetOp setOp=Intersection, const std::string &filter="", const bool ignoreZeroTimers=false)
Teuchos::RCP< const Epetra_Vector > get_x_init() const
Return initial solution.
void setOption(const char option_true[], const char option_false[], bool *option_val, const char documentation[]=NULL)
const SG_RF sg_rf_values[]
void set_p_sg_init(int i, const Stokhos::EpetraVectorOrthogPoly &p_sg_in)
Set initial parameter polynomial.
EParseCommandLineReturn parse(int argc, char *argv[], std::ostream *errout=&std::cerr) const
const char * sg_solver_names[]
const int num_krylov_solver
const SG_Op sg_op_values[]
Teuchos::RCP< const Epetra_Map > get_g_map(int j) const
Return response function map.
Legendre polynomial basis.
InArgs createInArgs() const
Create InArgs.
void set_x_sg_init(const Stokhos::EpetraVectorOrthogPoly &x_sg_in)
Set initial solution polynomial.
int main(int argc, char **argv)
Teuchos::RCP< Epetra_Operator > create_W() const
Create W = alpha*M + beta*J matrix.
const char * sg_rf_names[]
void setDocString(const char doc_string[])
const char * sg_prec_names[]
Teuchos::RCP< const Epetra_Comm > getSpatialComm() const
Get spatial comm.
Teuchos::RCP< const Epetra_Map > get_x_map() const
Return solution vector map.
Teuchos::RCP< Epetra_Operator > create_W() const
Create W = alpha*M + beta*J matrix.
const Krylov_Solver krylov_solver_values[]
coeff_type & term(ordinal_type dimension, ordinal_type order)
Get term for dimension dimension and order order.
const SG_Solver sg_solver_values[]
Teuchos::RCP< const Epetra_Vector > get_p_init(int l) const
Return initial parameters.
Teuchos::RCP< EpetraExt::ModelEvaluator::Preconditioner > create_WPrec() const
Create preconditioner operator.
static void zeroOutTimers()
const char * krylov_method_names[]