53 #include "Stratimikos_DefaultLinearSolverBuilder.hpp"
54 #include "Thyra_LinearOpWithSolveFactoryHelpers.hpp"
55 #include "Thyra_PreconditionerBase.hpp"
56 #include "Thyra_PreconditionerFactoryBase.hpp"
57 #include "Thyra_EpetraThyraWrappers.hpp"
58 #include "Thyra_EpetraLinearOp.hpp"
68 #include "EpetraExt_VectorOut.h"
92 const char *
sg_rf_names[] = {
"Uniform",
"CC-Uniform",
"Rys",
"Log-Normal" };
100 "Slow Restricted",
"Moderate Restricted",
"Unrestricted" };
106 MPI_Init(&argc,&argv);
117 int MyPID = Comm->
MyPID();
124 "This example runs a stochastic collocation method.\n");
127 CLP.
setOption(
"num_mesh", &n,
"Number of mesh points in each direction");
132 "Random field type");
138 CLP.
setOption(
"std_dev", &sigma,
"Standard deviation");
140 double weightCut = 1.0;
141 CLP.
setOption(
"weight_cut", &weightCut,
"Weight cut");
144 CLP.
setOption(
"num_kl", &num_KL,
"Number of KL terms");
147 CLP.
setOption(
"order", &p,
"Polynomial order");
149 bool normalize_basis =
true;
150 CLP.
setOption(
"normalize",
"unnormalize", &normalize_basis,
151 "Normalize PC basis");
154 CLP.
setOption(
"krylov_solver", &krylov_solver,
159 CLP.
setOption(
"krylov_method", &krylov_method,
164 CLP.
setOption(
"prec_strategy", &precStrategy,
166 "Preconditioner strategy");
169 CLP.
setOption(
"tol", &tol,
"Solver tolerance");
174 "Sparse grid growth rule");
176 CLP.
parse( argc, argv );
179 std::cout <<
"Summary of command line options:" << std::endl
180 <<
"\tnum_mesh = " << n << std::endl
181 <<
"\trand_field = " <<
sg_rf_names[randField] << std::endl
182 <<
"\tmean = " << mean << std::endl
183 <<
"\tstd_dev = " << sigma << std::endl
184 <<
"\tweight_cut = " << weightCut << std::endl
185 <<
"\tnum_kl = " << num_KL << std::endl
186 <<
"\torder = " << p << std::endl
187 <<
"\tnormalize_basis = " << normalize_basis << std::endl
194 <<
"\ttol = " << tol << std::endl
199 bool nonlinear_expansion =
false;
201 nonlinear_expansion =
true;
208 for (
int i=0; i<num_KL; i++) {
212 p, normalize_basis));
217 p, normalize_basis,
true));
219 else if (randField ==
RYS) {
221 p, weightCut, normalize_basis));
225 p, normalize_basis));
233 int sparse_grid_growth = Pecos::MODERATE_RESTRICTED_GROWTH;
235 sparse_grid_growth = Pecos::SLOW_RESTRICTED_GROWTH;
237 sparse_grid_growth = Pecos::MODERATE_RESTRICTED_GROWTH;
239 sparse_grid_growth = Pecos::UNRESTRICTED_GROWTH;
240 Stokhos::SparseGridQuadrature<int,double> quad(basis,p,1e-12,sg_growth);
242 quad.getQuadPoints();
244 quad.getQuadWeights();
245 int nqp = quad_weights.
size();
249 basis, nonlinear_expansion);
262 EpetraExt::ModelEvaluator::InArgs inArgs = model.
createInArgs();
263 EpetraExt::ModelEvaluator::OutArgs outArgs = model.
createOutArgs();
264 EpetraExt::ModelEvaluator::OutArgs outArgs2 = model.
createOutArgs();
276 if (krylov_solver ==
AZTECOO) {
277 stratParams.
set(
"Linear Solver Type",
"AztecOO");
279 stratParams.
sublist(
"Linear Solver Types").sublist(
"AztecOO").sublist(
"Forward Solve");
280 aztecParams.
set(
"Max Iterations", 1000);
281 aztecParams.
set(
"Tolerance", tol);
283 aztecParams.
sublist(
"AztecOO Settings");
284 if (krylov_method ==
GMRES)
285 aztecSettings.
set(
"Aztec Solver",
"GMRES");
286 else if (krylov_method ==
CG)
287 aztecSettings.
set(
"Aztec Solver",
"CG");
288 aztecSettings.
set(
"Aztec Preconditioner",
"none");
289 aztecSettings.
set(
"Size of Krylov Subspace", 100);
290 aztecSettings.
set(
"Convergence Test",
"r0");
291 aztecSettings.
set(
"Output Frequency", 10);
293 stratParams.
sublist(
"Linear Solver Types").sublist(
"AztecOO").sublist(
"VerboseObject");
294 verbParams.
set(
"Verbosity Level",
"none");
296 else if (krylov_solver ==
BELOS) {
297 stratParams.
set(
"Linear Solver Type",
"Belos");
299 stratParams.
sublist(
"Linear Solver Types").sublist(
"Belos");
301 if (krylov_method ==
GMRES || krylov_method ==
FGMRES) {
302 belosParams.
set(
"Solver Type",
"Block GMRES");
304 &(belosParams.
sublist(
"Solver Types").sublist(
"Block GMRES"));
305 if (krylov_method ==
FGMRES)
306 belosSolverParams->
set(
"Flexible Gmres",
true);
308 else if (krylov_method ==
RGMRES) {
309 belosParams.
set(
"Solver Type",
"GCRODR");
311 &(belosParams.
sublist(
"Solver Types").sublist(
"GCRODR"));
312 belosSolverParams->
set(
"Num Recycled Blocks", 10);
314 else if (krylov_method ==
CG) {
315 belosParams.
set(
"Solver Type",
"Block CG");
317 &(belosParams.
sublist(
"Solver Types").sublist(
"Block CG"));
320 belosSolverParams->
set(
"Convergence Tolerance", tol);
321 belosSolverParams->
set(
"Maximum Iterations", 1000);
322 belosSolverParams->
set(
"Num Blocks", 100);
323 belosSolverParams->
set(
"Output Frequency",10);
325 verbParams.
set(
"Verbosity Level",
"none");
327 stratParams.
set(
"Preconditioner Type",
"ML");
329 stratParams.
sublist(
"Preconditioner Types").sublist(
"ML").sublist(
"ML Settings");
330 precParams.
set(
"default values",
"SA");
331 precParams.
set(
"ML output", 0);
332 precParams.
set(
"max levels",5);
333 precParams.
set(
"increasing or decreasing",
"increasing");
334 precParams.
set(
"aggregation: type",
"Uncoupled");
335 precParams.
set(
"smoother: type",
"ML symmetric Gauss-Seidel");
336 precParams.
set(
"smoother: sweeps",2);
337 precParams.
set(
"smoother: pre or post",
"both");
338 precParams.
set(
"coarse: max size", 200);
339 #ifdef HAVE_ML_AMESOS
340 precParams.
set(
"coarse: type",
"Amesos-KLU");
342 precParams.
set(
"coarse: type",
"Jacobi");
346 Stratimikos::DefaultLinearSolverBuilder linearSolverBuilder;
347 linearSolverBuilder.setParameterList(
Teuchos::rcp(&stratParams,
false));
352 linearSolverBuilder.createLinearSolveStrategy(
"");
354 Teuchos::VerboseObjectBase::getDefaultOStream();
355 lowsFactory->setOStream(out);
360 lowsFactory->createOp();
362 lowsFactory->getPreconditionerFactory();
364 precFactory->createPrec();
368 Thyra::epetraLinearOp(A);
370 rcp(
new Thyra::DefaultLinearOpSource<double>(A_thyra));
374 if (!(krylov_solver ==
BELOS && krylov_method ==
CG)) {
376 Thyra::SolveMeasureType solveMeasure(
377 Thyra::SOLVE_MEASURE_NORM_RESIDUAL,
378 Thyra::SOLVE_MEASURE_NORM_INIT_RESIDUAL);
380 Teuchos::rcp(
new Thyra::SolveCriteria<double>(solveMeasure, tol));
384 if (precStrategy ==
MEAN) {
387 precFactory->initializePrec(losb, M_thyra.
get());
388 Thyra::initializePreconditionedOp<double>(
389 *lowsFactory, A_thyra, M_thyra, lows.
ptr());
392 x_mean.PutScalar(0.0);
393 x_var.PutScalar(0.0);
395 for (
int qp=0; qp<nqp; qp++) {
399 for (
int i=0; i<num_KL; i++)
400 (*p)[i] = quad_points[qp][i];
414 Thyra::create_Vector(x, A_thyra->domain());
416 Thyra::create_Vector(f, A_thyra->range());
419 if (precStrategy !=
MEAN) {
421 precFactory->initializePrec(losb, M_thyra.
get());
422 Thyra::initializePreconditionedOp<double>(
423 *lowsFactory, A_thyra, M_thyra, lows.
ptr());
429 Thyra::SolveStatus<double> solveStatus =
430 lows->solve(Thyra::NOTRANS, *f_thyra, x_thyra.
ptr(),
431 solveCriteria.
ptr());
433 std::cout <<
"Collocation point " << qp+1 <<
'/' << nqp <<
": "
434 << solveStatus.message << std::endl;
442 outArgs2.set_g(0, g);
446 x2.Multiply(1.0, *x, *x, 0.0);
447 g2.Multiply(1.0, *g, *g, 0.0);
448 x_mean.Update(quad_weights[qp], *x, 1.0);
449 x_var.Update(quad_weights[qp], x2, 1.0);
450 g_mean.Update(quad_weights[qp], *g, 1.0);
451 g_var.Update(quad_weights[qp], g2, 1.0);
454 x2.Multiply(1.0, x_mean, x_mean, 0.0);
455 g2.Multiply(1.0, g_mean, g_mean, 0.0);
456 x_var.Update(-1.0, x2, 1.0);
457 g_var.Update(-1.0, g2, 1.0);
460 for (
int i=0; i<x_var.MyLength(); i++)
462 for (
int i=0; i<g_var.MyLength(); i++)
465 std::cout.precision(16);
466 std::cout <<
"\nResponse Mean = " << std::endl << g_mean << std::endl;
467 std::cout <<
"Response Std. Dev. = " << std::endl << g_var << std::endl;
470 EpetraExt::VectorToMatrixMarketFile(
"mean_col.mm", x_mean);
471 EpetraExt::VectorToMatrixMarketFile(
"std_dev_col.mm", x_var);
480 catch (std::exception& e) {
481 std::cout << e.what() << std::endl;
483 catch (std::string& s) {
484 std::cout << s << std::endl;
487 std::cout << s << std::endl;
490 std::cout <<
"Caught unknown exception!" <<std:: endl;
const char * prec_strategy_names[]
KOKKOS_INLINE_FUNCTION PCE< Storage > sqrt(const PCE< Storage > &a)
#define TEUCHOS_FUNC_TIME_MONITOR(FUNCNAME)
Hermite polynomial basis.
const Krylov_Method krylov_method_values[]
void evalModel(const InArgs &inArgs, const OutArgs &outArgs) const
Evaluate model on InArgs.
Teuchos::RCP< Epetra_CrsMatrix > get_mean() const
Get mean matrix.
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
const int num_prec_strategy
RCP< ParameterList > sublist(const RCP< ParameterList > ¶mList, const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
const char * krylov_solver_names[]
virtual int MyPID() const =0
const SG_GROWTH sg_growth_values[]
const char * sg_growth_names[]
ModelEvaluator for a linear 2-D diffusion problem.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
const int num_krylov_method
static void summarize(Ptr< const Comm< int > > comm, std::ostream &out=std::cout, const bool alwaysWriteLocal=false, const bool writeGlobalStats=true, const bool writeZeroTimers=true, const ECounterSetOp setOp=Intersection, const std::string &filter="", const bool ignoreZeroTimers=false)
void setOption(const char option_true[], const char option_false[], bool *option_val, const char documentation[]=NULL)
const SG_RF sg_rf_values[]
EParseCommandLineReturn parse(int argc, char *argv[], std::ostream *errout=&std::cerr) const
const int num_krylov_solver
Teuchos::RCP< const Epetra_Map > get_p_map(int l) const
Return parameter vector map.
Teuchos::RCP< const Epetra_Map > get_g_map(int j) const
Return response function map.
Legendre polynomial basis.
int main(int argc, char **argv)
Teuchos::RCP< Epetra_Operator > create_W() const
Create W = alpha*M + beta*J matrix.
InArgs createInArgs() const
Create InArgs.
const char * sg_rf_names[]
OutArgs createOutArgs() const
Create OutArgs.
ScalarType f(const Teuchos::Array< ScalarType > &x, double a, double b)
Legendre polynomial basis using Clenshaw-Curtis quadrature points.
void setDocString(const char doc_string[])
Teuchos::RCP< const Epetra_Map > get_x_map() const
Return solution vector map.
const PrecStrategy prec_strategy_values[]
const Krylov_Solver krylov_solver_values[]
ScalarType g(const Teuchos::Array< ScalarType > &x, const ScalarType &y)
static void zeroOutTimers()
Teuchos::RCP< const Epetra_Map > get_f_map() const
Return residual vector map.
const char * krylov_method_names[]