Stokhos Package Browser (Single Doxygen Collection)
Version of the Day
|
Class for building a reduced-dimension basis and quadrature from a given set of polynomial chaos expansions. First generates 1-D orthogonal bases using the discretized Stieltjes procedure, forms their tensor product, and then orthogonalizes using Gram-Schmidt. More...
#include <Stokhos_StieltjesGramSchmidtBuilder.hpp>
Public Member Functions | |
StieltjesGramSchmidtBuilder (const Teuchos::RCP< const Quadrature< ordinal_type, value_type > > &quad, const Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > &pces, ordinal_type new_order, bool use_pce_qp, bool normalize) | |
Constructor. More... | |
~StieltjesGramSchmidtBuilder () | |
Destructor. More... | |
Teuchos::RCP< const OrthogPolyBasis< ordinal_type, value_type > > | getReducedBasis () const |
Get reduced basis. More... | |
Teuchos::RCP< Quadrature < ordinal_type, value_type > > | getReducedQuadrature () const |
Get reduced quadrature. More... | |
void | computeReducedPCEs (const Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > &pces, Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > &new_pces) |
Get reduced PCEs. More... | |
Protected Attributes | |
Teuchos::RCP< const Quadrature < ordinal_type, value_type > > | quad |
Quadrature object for original basis. More... | |
Teuchos::RCP< const OrthogPolyBasis< ordinal_type, value_type > > | tensor_basis |
Reduced tensor basis. More... | |
Teuchos::RCP< GramSchmidtBasis < ordinal_type, value_type > > | gs_basis |
Reduced Gram-Schmidt basis. More... | |
Teuchos::RCP < UserDefinedQuadrature < ordinal_type, value_type > > | gs_quad |
Reduced quadrature. More... | |
Private Member Functions | |
StieltjesGramSchmidtBuilder (const StieltjesGramSchmidtBuilder &) | |
StieltjesGramSchmidtBuilder & | operator= (const StieltjesGramSchmidtBuilder &b) |
Class for building a reduced-dimension basis and quadrature from a given set of polynomial chaos expansions. First generates 1-D orthogonal bases using the discretized Stieltjes procedure, forms their tensor product, and then orthogonalizes using Gram-Schmidt.
Definition at line 65 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.
Stokhos::StieltjesGramSchmidtBuilder< ordinal_type, value_type >::StieltjesGramSchmidtBuilder | ( | const Teuchos::RCP< const Quadrature< ordinal_type, value_type > > & | quad, |
const Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > & | pces, | ||
ordinal_type | new_order, | ||
bool | use_pce_qp, | ||
bool | normalize | ||
) |
Constructor.
Definition at line 50 of file Stokhos_StieltjesGramSchmidtBuilderImp.hpp.
|
inline |
Destructor.
Definition at line 75 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.
|
private |
Teuchos::RCP< const Stokhos::OrthogPolyBasis< ordinal_type, value_type > > Stokhos::StieltjesGramSchmidtBuilder< ordinal_type, value_type >::getReducedBasis | ( | ) | const |
Get reduced basis.
Definition at line 116 of file Stokhos_StieltjesGramSchmidtBuilderImp.hpp.
Teuchos::RCP< Stokhos::Quadrature< ordinal_type, value_type > > Stokhos::StieltjesGramSchmidtBuilder< ordinal_type, value_type >::getReducedQuadrature | ( | ) | const |
Get reduced quadrature.
Definition at line 124 of file Stokhos_StieltjesGramSchmidtBuilderImp.hpp.
void Stokhos::StieltjesGramSchmidtBuilder< ordinal_type, value_type >::computeReducedPCEs | ( | const Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > & | pces, |
Teuchos::Array< OrthogPolyApprox< ordinal_type, value_type > > & | new_pces | ||
) |
Get reduced PCEs.
Definition at line 132 of file Stokhos_StieltjesGramSchmidtBuilderImp.hpp.
|
private |
|
protected |
Quadrature object for original basis.
Definition at line 102 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.
|
protected |
Reduced tensor basis.
Definition at line 105 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.
|
protected |
Reduced Gram-Schmidt basis.
Definition at line 108 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.
|
protected |
Reduced quadrature.
Definition at line 111 of file Stokhos_StieltjesGramSchmidtBuilder.hpp.