Stokhos Package Browser (Single Doxygen Collection)
Version of the Day
|
Transforms a non-orthogonal multivariate basis to an orthogonal one using the Gram-Schmit procedure. More...
#include <Stokhos_GramSchmidtBasis.hpp>
Additional Inherited Members | |
Public Member Functions inherited from Stokhos::OrthogPolyBasis< ordinal_type, value_type > | |
OrthogPolyBasis () | |
Constructor. More... | |
virtual | ~OrthogPolyBasis () |
Destructor. More... | |
virtual ordinal_type | order () const =0 |
Return order of basis. More... | |
virtual ordinal_type | dimension () const =0 |
Return dimension of basis. More... | |
virtual ordinal_type | size () const =0 |
Return total size of basis. More... | |
virtual const Teuchos::Array < value_type > & | norm_squared () const =0 |
Return array storing norm-squared of each basis polynomial. More... | |
virtual const value_type & | norm_squared (ordinal_type i) const =0 |
Return norm squared of basis polynomial i . More... | |
virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeTripleProductTensor () const =0 |
Compute triple product tensor. More... | |
virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeLinearTripleProductTensor () const =0 |
Compute linear triple product tensor where k = 0,1. More... | |
virtual value_type | evaluateZero (ordinal_type i) const =0 |
Evaluate basis polynomial i at zero. More... | |
virtual void | evaluateBases (const Teuchos::ArrayView< const value_type > &point, Teuchos::Array< value_type > &basis_vals) const =0 |
Evaluate basis polynomials at given point point . More... | |
virtual void | print (std::ostream &os) const =0 |
Print basis to stream os . More... | |
virtual const std::string & | getName () const =0 |
Return string name of basis. More... | |
Transforms a non-orthogonal multivariate basis to an orthogonal one using the Gram-Schmit procedure.
Given a basis with an inner product defined by
where and are a set of quadrature points and weights, this class generates a new basis that satisfies .
NOTE: Currently on the classical Gram-Schmidt algorithm is implemented.
Definition at line 72 of file Stokhos_GramSchmidtBasis.hpp.