Stokhos Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Stokhos_GramSchmidtUnitTest.cpp
Go to the documentation of this file.
1 // $Id$
2 // $Source$
3 // @HEADER
4 // ***********************************************************************
5 //
6 // Stokhos Package
7 // Copyright (2009) Sandia Corporation
8 //
9 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
10 // license for use of this work by or on behalf of the U.S. Government.
11 //
12 // Redistribution and use in source and binary forms, with or without
13 // modification, are permitted provided that the following conditions are
14 // met:
15 //
16 // 1. Redistributions of source code must retain the above copyright
17 // notice, this list of conditions and the following disclaimer.
18 //
19 // 2. Redistributions in binary form must reproduce the above copyright
20 // notice, this list of conditions and the following disclaimer in the
21 // documentation and/or other materials provided with the distribution.
22 //
23 // 3. Neither the name of the Corporation nor the names of the
24 // contributors may be used to endorse or promote products derived from
25 // this software without specific prior written permission.
26 //
27 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
28 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
31 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
32 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
33 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
34 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
35 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
36 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 //
39 // Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
40 //
41 // ***********************************************************************
42 // @HEADER
43 
48 
49 #include "Stokhos.hpp"
54 
55 // Quadrature functor to be passed into quadrature expansion for mapping
56 // from Gram-Schmidt basis back to original PCE
61  pce(pce_), basis(basis_), vec(1) {}
62 
63  double operator() (const double& a) const {
64  vec[0] = a;
65  return pce.evaluate(vec);
66  }
70 };
75  pce(pce_), basis(basis_), vec(2) {}
76 
77  double operator() (const double& a, const double& b) const {
78  vec[0] = a;
79  vec[1] = b;
80  return pce.evaluate(vec);
81  }
85 };
86 
87 // Class encapsulating setup of the Gram-Schmidt basis for a given PCE
88 template <typename OrdinalType, typename ValueType>
90  ValueType rtol, atol;
91  OrdinalType sz, gs_sz;
97 
99  {
100  rtol = 1e-7;
101  atol = 1e-12;
102  const OrdinalType d = 3;
103  const OrdinalType p = 5;
104 
105  // Create product basis
107  for (OrdinalType i=0; i<d; i++)
108  bases[i] =
110  basis =
112 
113  // Create approximation
114  sz = basis->size();
116  for (OrdinalType i=0; i<d; i++)
117  x.term(i, 1) = 1.0;
118 
119  // Tensor product quadrature
122 
123  // Triple product tensor
126 
127  // Quadrature expansion
130  exp_params->set("Use Quadrature for Times", true);
132 
133  // Compute PCE via quadrature expansion
134  u.reset(basis);
135  v.reset(basis);
136  w.reset(basis);
137  exp->sin(u,x);
138  exp->exp(v,x);
139  exp->times(w,u,v);
140 
141  // Compute Stieltjes basis
143  st_bases[0] = Teuchos::rcp(new Stokhos::StieltjesPCEBasis<OrdinalType,ValueType>(p, Teuchos::rcp(&u,false), quad, true));
144  st_bases[1] = Teuchos::rcp(new Stokhos::StieltjesPCEBasis<OrdinalType,ValueType>(p, Teuchos::rcp(&v,false), quad, true));
147  Stokhos::OrthogPolyApprox<OrdinalType,ValueType> u_st(st_basis), v_st(st_basis);
148  u_st.term(0, 0) = u.mean();
149  u_st.term(0, 1) = 1.0;
150  v_st.term(0, 0) = v.mean();
151  v_st.term(1, 1) = 1.0;
152 
153  // Use Gram-Schmidt to orthogonalize Stieltjes basis of u and v
154  Teuchos::Array<ValueType> st_points_0;
155  Teuchos::Array<ValueType> st_weights_0;
157  st_bases[0]->getQuadPoints(p+1, st_points_0, st_weights_0, st_values_0);
158  Teuchos::Array<ValueType> st_points_1;
159  Teuchos::Array<ValueType> st_weights_1;
161  st_bases[1]->getQuadPoints(p+1, st_points_1, st_weights_1, st_values_1);
164  for (int i=0; i<st_points_0.size(); i++) {
165  (*st_points)[i].resize(2);
166  (*st_points)[i][0] = st_points_0[i];
167  (*st_points)[i][1] = st_points_1[i];
168  }
171  *st_weights = st_weights_0;
172 
173  gs_basis = Teuchos::rcp(new Stokhos::GramSchmidtBasis<OrdinalType,ValueType>(st_basis, *st_points, *st_weights, 1e-15));
174  gs_sz = gs_basis->size();
175 
176  // Triple product tensor
179 
180  // Create quadrature for Gram-Schmidt basis using quad points and
181  // and weights from original basis mapped to Stieljtes basis
183  st_points;
184  Teuchos::RCP< const Teuchos::Array<ValueType> > weights = st_weights;
186 
187  // Gram-Schmidt quadrature expansion
189  gs_Cijk,
190  gs_quad,
191  exp_params);
192 
196 
197  // Map expansion in Stieltjes basis to Gram-Schmidt basis
198  gs_basis->transformCoeffs(u_st.coeff(), u_gs.coeff());
199  gs_basis->transformCoeffs(v_st.coeff(), v_gs.coeff());
200 
201  // Compute w_gs = u_gs*v_gs in Gram-Schmidt basis
202  gs_exp.times(w_gs, u_gs, v_gs);
203  }
204 
205 };
206 
207 namespace GramSchmidtTest {
209 
210  // Tests mapping from Gram-Schmidt basis to original is correct
211  TEUCHOS_UNIT_TEST( Stokhos_GramSchmidtBasis, Map ) {
213  gram_schmidt_pce_binary_quad_func quad_func(setup.u_gs, *setup.gs_basis);
214  setup.exp->binary_op(quad_func, u2, setup.u, setup.v);
215  success = comparePCEs(setup.u, "u", u2, "u2", setup.rtol, setup.atol, out);
216  }
217 
218  // Tests Gram-Schmidt basis is orthogonal
219  TEUCHOS_UNIT_TEST( Stokhos_GramSchmidtBasis, Orthog ) {
220  const Teuchos::Array<double>& norms = setup.gs_basis->norm_squared();
221  const Teuchos::Array<double>& weights = setup.gs_quad->getQuadWeights();
222  const Teuchos::Array< Teuchos::Array<double> >& values =
223  setup.gs_quad->getBasisAtQuadPoints();
225  for (int i=0; i<setup.gs_sz; i++) {
226  for (int j=0; j<setup.gs_sz; j++) {
227  for (int k=0; k<weights.size(); k++)
228  mat(i,j) += weights[k]*values[k][i]*values[k][j];
229  mat(i,j) /= std::sqrt(norms[i]*norms[j]);
230  }
231  mat(i,i) -= 1.0;
232  }
233  double tol = 1e-4;
234  success = mat.normInf() < tol;
235  if (!success) {
236  out << "\n Error, mat.normInf() < tol = " << mat.normInf()
237  << " < " << tol << ": failed!\n";
238  out << "mat = " << printMat(mat) << std::endl;
239  }
240  }
241 
242  // Tests PCE computed from Gram-Schmidt basis is same as original
243  TEUCHOS_UNIT_TEST( Stokhos_GramSchmidtBasis, PCE ) {
245  gram_schmidt_pce_binary_quad_func quad_func(setup.w_gs, *setup.gs_basis);
246  setup.exp->binary_op(quad_func, w2, setup.u, setup.v);
247  success = comparePCEs(setup.w, "w", w2, "w2", setup.rtol, setup.atol, out);
248  }
249 
250  // Tests mean computed from Gram-Schmidt basis is same as original
251  TEUCHOS_UNIT_TEST( Stokhos_GramSchmidtBasis, Mean ) {
252  success = Teuchos::testRelErr("w.mean()", setup.w.mean(),
253  "w_gs.mean()", setup.w_gs.mean(),
254  "rtol", setup.rtol,
255  "rtol", setup.rtol,
256  Teuchos::Ptr<std::ostream>(out.getOStream().get()));
257  }
258 
259  // Tests mean standard deviation from Gram-Schmidt basis is same as original
260  TEUCHOS_UNIT_TEST( Stokhos_GramSchmidtBasis, StandardDeviation ) {
261  success = Teuchos::testRelErr("w.standard_deviation()",
262  setup.w.standard_deviation(),
263  "w_gs.standard_devaition()",
264  setup.w_gs.standard_deviation(),
265  "rtol", 1e-3,
266  "rtol", 1e-3,
267  Teuchos::Ptr<std::ostream>(out.getOStream().get()));
268  }
269 
270 }
271 
272 int main( int argc, char* argv[] ) {
273  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
275 }
KOKKOS_INLINE_FUNCTION PCE< Storage > sqrt(const PCE< Storage > &a)
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > w_gs
void sin(OrthogPolyApprox< ordinal_type, value_type, node_type > &c, const OrthogPolyApprox< ordinal_type, value_type, node_type > &a)
void times(OrthogPolyApprox< ordinal_type, value_type, node_type > &c, const OrthogPolyApprox< ordinal_type, value_type, node_type > &a, const OrthogPolyApprox< ordinal_type, value_type, node_type > &b)
value_type evaluate(const Teuchos::Array< value_type > &point) const
Evaluate polynomial approximation at a point.
SerialBandDenseMatrixPrinter< OrdinalType, ScalarType > printMat(const SerialBandDenseMatrix< OrdinalType, ScalarType > &obj)
virtual Teuchos::RCP< Stokhos::Sparse3Tensor< ordinal_type, value_type > > computeTripleProductTensor() const =0
Compute triple product tensor.
void exp(OrthogPolyApprox< ordinal_type, value_type, node_type > &c, const OrthogPolyApprox< ordinal_type, value_type, node_type > &a)
const Stokhos::OrthogPolyApprox< int, double > & pce
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > v
bool comparePCEs(const PCEType &a1, const std::string &a1_name, const Stokhos::OrthogPolyApprox< OrdinalType, ValueType > &a2, const std::string &a2_name, const ValueType &rel_tol, const ValueType &abs_tol, Teuchos::FancyOStream &out)
GramSchmidt_PCE_Setup< int, double > setup
const Stokhos::OrthogPolyApprox< int, double > & pce
gram_schmidt_pce_binary_quad_func(const Stokhos::OrthogPolyApprox< int, double > &pce_, const Stokhos::OrthogPolyBasis< int, double > &basis_)
double operator()(const double &a) const
pointer coeff()
Return coefficient array.
const Stokhos::OrthogPolyBasis< int, double > & basis
static int runUnitTestsFromMain(int argc, char *argv[])
const Stokhos::OrthogPolyBasis< int, double > & basis
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > u
void reset(const Teuchos::RCP< const Stokhos::OrthogPolyBasis< ordinal_type, value_type > > &new_basis, ordinal_type sz=0)
Reset to a new basis.
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > u_gs
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > v_gs
double operator()(const double &a, const double &b) const
TEUCHOS_UNIT_TEST(Stokhos_GramSchmidtBasis, Map)
Teuchos::RCP< const Stokhos::GramSchmidtBasis< OrdinalType, ValueType > > gs_basis
virtual Teuchos::RCP< Stokhos::Sparse3Tensor< ordinal_type, value_type > > computeTripleProductTensor() const
Compute triple product tensor.
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > w
value_type mean() const
Compute mean of expansion.
gram_schmidt_pce_unary_quad_func(const Stokhos::OrthogPolyApprox< int, double > &pce_, const Stokhos::OrthogPolyBasis< int, double > &basis_)
int main(int argc, char **argv)
Teuchos::RCP< const Stokhos::CompletePolynomialBasis< OrdinalType, ValueType > > basis
ScalarTraits< ScalarType >::magnitudeType normInf() const
Teuchos::RCP< const Stokhos::Quadrature< OrdinalType, ValueType > > gs_quad
size_type size() const
virtual ordinal_type size() const
Return total size of basis.
bool testRelErr(const std::string &v1_name, const Scalar &v1, const std::string &v2_name, const Scalar &v2, const std::string &maxRelErr_error_name, const typename Teuchos::ScalarTraits< Scalar >::magnitudeType &maxRelErr_error, const std::string &maxRelErr_warning_name, const typename Teuchos::ScalarTraits< Scalar >::magnitudeType &maxRelErr_warning, const Ptr< std::ostream > &out)
Defines quadrature for a tensor product basis by tensor products of 1-D quadrature rules...
virtual ordinal_type size() const =0
Return total size of basis.
Teuchos::RCP< Stokhos::QuadOrthogPolyExpansion< OrdinalType, ValueType > > exp
reference term(ordinal_type dimension, ordinal_type order)
Get coefficient term for given dimension and order.