|
static void | Multiply (const Matrix &A, bool transposeA, const Matrix &B, bool transposeB, Matrix &C, bool call_FillComplete_on_result=true, bool doOptimizeStorage=true, const std::string &label=std::string(), const RCP< ParameterList > ¶ms=null) |
|
static RCP< Matrix > | Multiply (const Matrix &A, bool transposeA, const Matrix &B, bool transposeB, RCP< Matrix > C_in, Teuchos::FancyOStream &fos, bool doFillComplete=true, bool doOptimizeStorage=true, const std::string &label=std::string(), const RCP< ParameterList > ¶ms=null) |
| Helper function to do matrix-matrix multiply. More...
|
|
static RCP< Matrix > | Multiply (const Matrix &A, bool transposeA, const Matrix &B, bool transposeB, Teuchos::FancyOStream &fos, bool callFillCompleteOnResult=true, bool doOptimizeStorage=true, const std::string &label=std::string(), const RCP< ParameterList > ¶ms=null) |
| Helper function to do matrix-matrix multiply. More...
|
|
static RCP< Epetra_CrsMatrix > | MLTwoMatrixMultiply (const Epetra_CrsMatrix &epA, const Epetra_CrsMatrix &epB, Teuchos::FancyOStream &fos) |
|
static RCP< BlockedCrsMatrix > | TwoMatrixMultiplyBlock (const BlockedCrsMatrix &A, bool transposeA, const BlockedCrsMatrix &B, bool transposeB, Teuchos::FancyOStream &fos, bool doFillComplete=true, bool doOptimizeStorage=true) |
| Helper function to do matrix-matrix multiply "in-place". More...
|
|
static void | TwoMatrixAdd (const Matrix &A, bool transposeA, SC alpha, Matrix &B, SC beta) |
| Helper function to calculate B = alpha*A + beta*B. More...
|
|
static void | TwoMatrixAdd (const Matrix &A, bool transposeA, const SC &alpha, const Matrix &B, bool transposeB, const SC &beta, RCP< Matrix > &C, Teuchos::FancyOStream &fos, bool AHasFixedNnzPerRow=false) |
| Helper function to calculate C = alpha*A + beta*B. More...
|
|
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
class Xpetra::MatrixMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >
Definition at line 53 of file Xpetra_MatrixMatrix_decl.hpp.
template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Xpetra::MatrixMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::Multiply |
( |
const Matrix & |
A, |
|
|
bool |
transposeA, |
|
|
const Matrix & |
B, |
|
|
bool |
transposeB, |
|
|
Matrix & |
C, |
|
|
bool |
call_FillComplete_on_result = true , |
|
|
bool |
doOptimizeStorage = true , |
|
|
const std::string & |
label = std::string() , |
|
|
const RCP< ParameterList > & |
params = null |
|
) |
| |
|
static |
Given CrsMatrix objects A, B and C, form the product C = A*B. In a parallel setting, A and B need not have matching distributions, but C needs to have the same row-map as A (if transposeA is false). At this time C=AT*B and C=A*BT are known to not work. However, C=A*B and C=AT*BT are known to work, Kurtis Nusbaum 03/24/2011
- Parameters
-
A | Input, must already have had 'FillComplete()' called. |
transposeA | Input, whether to use transpose of matrix A. |
B | Input, must already have had 'FillComplete()' called. |
transposeB | Input, whether to use transpose of matrix B. |
C | Result. On entry to this method, it doesn't matter whether FillComplete() has already been called on C or not. If it has, then C's graph must already contain all nonzero locations that will be produced when forming the product A*B. On exit, C.FillComplete() will have been called, unless the last argument to this function is specified to be false. |
call_FillComplete_on_result | Optional argument, defaults to true. Power users may specify this argument to be false if they DON'T want this function to call C.FillComplete. (It is often useful to allow this function to call C.FillComplete, in cases where one or both of the input matrices are rectangular and it is not trivial to know which maps to use for the domain- and range-maps.) |
Definition at line 50 of file Xpetra_MatrixMatrix_def.hpp.
template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
RCP< Xpetra::Matrix< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Xpetra::MatrixMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::Multiply |
( |
const Matrix & |
A, |
|
|
bool |
transposeA, |
|
|
const Matrix & |
B, |
|
|
bool |
transposeB, |
|
|
RCP< Matrix > |
C_in, |
|
|
Teuchos::FancyOStream & |
fos, |
|
|
bool |
doFillComplete = true , |
|
|
bool |
doOptimizeStorage = true , |
|
|
const std::string & |
label = std::string() , |
|
|
const RCP< ParameterList > & |
params = null |
|
) |
| |
|
static |
Helper function to do matrix-matrix multiply.
Given CrsMatrix objects A, B and C, form the product C = A*B. In a parallel setting, A and B need not have matching distributions, but C needs to have the same row-map as A (if transposeA is false). At this time C=AT*B and C=A*BT are known to not work. However, C=A*B and C=AT*BT are known to work, Kurtis Nusbaum 03/24/2011
- Parameters
-
A | Input, must already have had 'FillComplete()' called. |
transposeA | Input, whether to use transpose of matrix A. |
B | Input, must already have had 'FillComplete()' called. |
transposeB | Input, whether to use transpose of matrix B. |
C | Result. If Teuchos::null, a new CrsMatrix is created with optimal number of nnz per row. |
call_FillComplete_on_result | Optional argument, defaults to true. Power users may specify this argument to be false if they DON'T want this function to call C.FillComplete. (It is often useful to allow this function to call C.FillComplete, in cases where one or both of the input matrices are rectangular and it is not trivial to know which maps to use for the domain- and range-maps.) |
Definition at line 142 of file Xpetra_MatrixMatrix_def.hpp.
template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Helper function to calculate B = alpha*A + beta*B.
- Parameters
-
A | left matrix operand |
transposeA | indicate whether to use transpose of A |
alpha | scalar multiplier for A |
B | right matrix operand |
beta | scalar multiplier for B |
- Returns
- sum in B.
Note that B does not have to be fill-completed.
Definition at line 321 of file Xpetra_MatrixMatrix_def.hpp.