ROL
Public Member Functions | List of all members
constraint2< Real > Class Template Reference
+ Inheritance diagram for constraint2< Real >:

Public Member Functions

 constraint2 ()
 
void value (ROL::Vector< Real > &c, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\). More...
 
void applyJacobian_1 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\). More...
 
void applyJacobian_2 (ROL::Vector< Real > &jv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\). More...
 
void applyAdjointJacobian_1 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface. More...
 
void applyAdjointJacobian_2 (ROL::Vector< Real > &ajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface. More...
 
void applyAdjointHessian_11 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\). More...
 
void applyAdjointHessian_12 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\). More...
 
void applyAdjointHessian_21 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\). More...
 
void applyAdjointHessian_22 (ROL::Vector< Real > &ahwv, const ROL::Vector< Real > &w, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
 Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\). More...
 
- Public Member Functions inherited from ROL::Constraint_SimOpt< Real >
 Constraint_SimOpt ()
 
virtual void update (const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
virtual void update (const Vector< Real > &u, const Vector< Real > &z, UpdateType type, int iter=-1)
 
virtual void update_1 (const Vector< Real > &u, bool flag=true, int iter=-1)
 Update constraint functions with respect to Sim variable. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
virtual void update_1 (const Vector< Real > &u, UpdateType type, int iter=-1)
 
virtual void update_2 (const Vector< Real > &z, bool flag=true, int iter=-1)
 Update constraint functions with respect to Opt variable. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
virtual void update_2 (const Vector< Real > &z, UpdateType type, int iter=-1)
 
virtual void solve_update (const Vector< Real > &u, const Vector< Real > &z, UpdateType type, int iter=-1)
 Update SimOpt constraint during solve (disconnected from optimization updates). More...
 
virtual void solve (Vector< Real > &c, Vector< Real > &u, const Vector< Real > &z, Real &tol)
 Given \(z\), solve \(c(u,z)=0\) for \(u\). More...
 
virtual void setSolveParameters (ParameterList &parlist)
 Set solve parameters. More...
 
virtual void applyInverseJacobian_1 (Vector< Real > &ijv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
 Apply the inverse partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-1} \in L(\mathcal{C}, \mathcal{U})\), to the vector \(v\). More...
 
virtual void applyAdjointJacobian_1 (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More...
 
virtual void applyAdjointJacobian_2 (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More...
 
virtual void applyInverseAdjointJacobian_1 (Vector< Real > &iajv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
 Apply the inverse of the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^{-*} \in L(\mathcal{U}^*, \mathcal{C}^*)\), to the vector \(v\). More...
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C})\), to vector \(v\). In general, this preconditioner satisfies the following relationship:

\[ c'(x) c'(x)^* P(x) v \approx v \,. \]

It is used by the solveAugmentedSystem method. More...

 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
virtual void update (const Vector< Real > &x, UpdateType type, int iter=-1)
 Update constraint function. More...
 
virtual void value (Vector< Real > &c, const Vector< Real > &x, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
virtual void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual void applyAdjointHessian (Vector< Real > &ahwv, const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
virtual Real checkSolve (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &c, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian_1 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
 Check the consistency of the Jacobian and its adjoint. This is the primary interface. More...
 
virtual Real checkAdjointConsistencyJacobian_1 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 Check the consistency of the Jacobian and its adjoint. This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More...
 
virtual Real checkAdjointConsistencyJacobian_2 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
 Check the consistency of the Jacobian and its adjoint. This is the primary interface. More...
 
virtual Real checkAdjointConsistencyJacobian_2 (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 Check the consistency of the Jacobian and its adjoint. This is the secondary interface, for use with dual spaces where the user does not define the dual() operation. More...
 
virtual Real checkInverseJacobian_1 (const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkInverseAdjointJacobian_1 (const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
 
std::vector< std::vector< Real > > checkApplyJacobian_1 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 
std::vector< std::vector< Real > > checkApplyJacobian_1 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 
std::vector< std::vector< Real > > checkApplyJacobian_2 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 
std::vector< std::vector< Real > > checkApplyJacobian_2 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_11 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_11 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_21 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 \( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More...
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_21 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 \( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More...
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_12 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 \( u\in U \), \( z\in Z \), \( p\in C^\ast \), \( v \in U \), \( hv \in U^\ast \) More...
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_12 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_22 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 
std::vector< std::vector< Real > > checkApplyAdjointHessian_22 (const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &p, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 
- Protected Attributes inherited from ROL::Constraint_SimOpt< Real >
Real atol_
 
Real rtol_
 
Real stol_
 
Real factor_
 
Real decr_
 
int maxit_
 
bool print_
 
bool zero_
 
int solverType_
 
bool firstSolve_
 

Detailed Description

template<typename Real>
class constraint2< Real >

Definition at line 224 of file test_19.cpp.

Constructor & Destructor Documentation

template<typename Real >
constraint2< Real >::constraint2 ( )
inline

Definition at line 226 of file test_19.cpp.

Member Function Documentation

template<typename Real >
void constraint2< Real >::value ( ROL::Vector< Real > &  c,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Evaluate the constraint operator \(c:\mathcal{U}\times\mathcal{Z} \rightarrow \mathcal{C}\) at \((u,z)\).

Parameters
[out]cis the result of evaluating the constraint operator at \((u,z)\); a constraint-space vector
[in]uis the constraint argument; a simulation-space vector
[in]zis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(u,z)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{u} \in \mathcal{U}\), and $ \(\mathsf{z} \in\mathcal{Z}\).


Implements ROL::Constraint_SimOpt< Real >.

Definition at line 227 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyJacobian_1 ( ROL::Vector< Real > &  jv,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the partial constraint Jacobian at \((u,z)\), \(c_u(u,z) \in L(\mathcal{U}, \mathcal{C})\), to the vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b  \form#221; a constraint-space vector
  @param[in]       v   is a simulation-space vector
  @param[in]       u   is the constraint argument; an simulation-space vector
  @param[in]       z   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#227, where

\(v \in \mathcal{U}\), \(\mathsf{jv} \in \mathcal{C}\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 241 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyJacobian_2 ( ROL::Vector< Real > &  jv,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the partial constraint Jacobian at \((u,z)\), \(c_z(u,z) \in L(\mathcal{Z}, \mathcal{C})\), to the vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b  \form#221; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       u   is the constraint argument; a simulation-space vector
  @param[in]       z   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#230, where

\(v \in \mathcal{Z}\), \(\mathsf{jv} \in \mathcal{C}\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 259 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointJacobian_1 ( ROL::Vector< Real > &  ajv,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_u(u,z)^* \in L(\mathcal{C}^*, \mathcal{U}^*)\), to the vector \(v\). This is the primary interface.

  @param[out]      ajv    is the result of applying the adjoint of the constraint Jacobian to @b v at @b (u,z); a dual simulation-space vector
  @param[in]       v      is a dual constraint-space vector
  @param[in]       u      is the constraint argument; a simulation-space vector
  @param[in]       z      is the constraint argument; an optimization-space vector
  @param[in,out]   tol    is a tolerance for inexact evaluations; currently unused

  On return, \form#236, where

\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{U}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 277 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointJacobian_2 ( ROL::Vector< Real > &  ajv,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the adjoint of the partial constraint Jacobian at \((u,z)\), \(c_z(u,z)^* \in L(\mathcal{C}^*, \mathcal{Z}^*)\), to vector \(v\). This is the primary interface.

  @param[out]      ajv    is the result of applying the adjoint of the constraint Jacobian to @b v at @b  \form#221; a dual optimization-space vector
  @param[in]       v      is a dual constraint-space vector
  @param[in]       u      is the constraint argument; a simulation-space vector
  @param[in]       z      is the constraint argument; an optimization-space vector
  @param[in,out]   tol    is a tolerance for inexact evaluations; currently unused

  On return, \form#239, where

\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{Z}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 295 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointHessian_11 ( ROL::Vector< Real > &  ahwv,
const ROL::Vector< Real > &  w,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uu}(u,z)(v,\cdot)^*w\).

  @param[out]      ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint simulation-space Jacobian at @b  \form#221 to the vector @b  \form#245 in direction @b  \form#245; a dual simulation-space vector
  @param[in]       w    is the direction vector; a dual constraint-space vector
  @param[in]       v    is a simulation-space vector
  @param[in]       u    is the constraint argument; a simulation-space vector
  @param[in]       z    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#247, where

\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 312 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointHessian_12 ( ROL::Vector< Real > &  ahwv,
const ROL::Vector< Real > &  w,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{uz}(u,z)(v,\cdot)^*w\).

  @param[out]      ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint simulation-space Jacobian at @b  \form#221 to the vector @b  \form#245 in direction @b  \form#245; a dual optimization-space vector
  @param[in]       w    is the direction vector; a dual constraint-space vector
  @param[in]       v    is a simulation-space vector
  @param[in]       u    is the constraint argument; a simulation-space vector
  @param[in]       z    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#251, where

\(w \in \mathcal{C}^*\), \(v \in \mathcal{U}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 328 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointHessian_21 ( ROL::Vector< Real > &  ahwv,
const ROL::Vector< Real > &  w,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zu}(u,z)(v,\cdot)^*w\).

  @param[out]      ahwv is the result of applying the simulation-space derivative of the adjoint of the constraint optimization-space Jacobian at @b  \form#221 to the vector @b  \form#245 in direction @b  \form#245; a dual simulation-space vector
  @param[in]       w    is the direction vector; a dual constraint-space vector
  @param[in]       v    is a optimization-space vector
  @param[in]       u    is the constraint argument; a simulation-space vector
  @param[in]       z    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#254, where

\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{U}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 347 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().

template<typename Real >
void constraint2< Real >::applyAdjointHessian_22 ( ROL::Vector< Real > &  ahwv,
const ROL::Vector< Real > &  w,
const ROL::Vector< Real > &  v,
const ROL::Vector< Real > &  u,
const ROL::Vector< Real > &  z,
Real &  tol 
)
inlinevirtual

Apply the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at \((u,z)\) to the vector \(w\) in the direction \(v\), according to \(v\mapsto c_{zz}(u,z)(v,\cdot)^*w\).

  @param[out]      ahwv is the result of applying the optimization-space derivative of the adjoint of the constraint optimization-space Jacobian at @b  \form#221 to the vector @b  \form#245 in direction @b  \form#245; a dual optimization-space vector
  @param[in]       w    is the direction vector; a dual constraint-space vector
  @param[in]       v    is a optimization-space vector
  @param[in]       u    is the constraint argument; a simulation-space vector
  @param[in]       z    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#256, where

\(w \in \mathcal{C}^*\), \(v \in \mathcal{Z}\), and \(\mathsf{ahwv} \in \mathcal{Z}^*\).


Reimplemented from ROL::Constraint_SimOpt< Real >.

Definition at line 366 of file test_19.cpp.

References ROL::Vector< Real >::dimension(), and ROL::StdVector< Real, Element >::getVector().


The documentation for this class was generated from the following file: