ROL
|
Objective function: f(x,y) = x^2 + y^2. More...
#include <ROL_ParaboloidCircle.hpp>
Public Member Functions | |
Objective_ParaboloidCircle () | |
Real | value (const Vector< Real > &x, Real &tol) |
Compute value. More... | |
void | gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol) |
Compute gradient. More... | |
void | hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply Hessian approximation to vector. More... | |
Public Member Functions inherited from ROL::Objective< Real > | |
virtual | ~Objective () |
Objective () | |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update objective function. More... | |
virtual void | update (const Vector< Real > &x, bool flag=true, int iter=-1) |
Update objective function. More... | |
virtual Real | dirDeriv (const Vector< Real > &x, const Vector< Real > &d, Real &tol) |
Compute directional derivative. More... | |
virtual void | invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply inverse Hessian approximation to vector. More... | |
virtual void | precond (Vector< Real > &Pv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply preconditioner to vector. More... | |
virtual void | prox (Vector< Real > &Pv, const Vector< Real > &v, Real t, Real &tol) |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference gradient check. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference gradient check. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference gradient check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference gradient check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference Hessian-applied-to-vector check. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference Hessian-applied-to-vector check. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference Hessian-applied-to-vector check with specified step sizes. More... | |
virtual std::vector < std::vector< Real > > | checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference Hessian-applied-to-vector check with specified step sizes. More... | |
virtual std::vector< Real > | checkHessSym (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout) |
Hessian symmetry check. More... | |
virtual std::vector< Real > | checkHessSym (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout) |
Hessian symmetry check. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Types | |
typedef std::vector< Real > | vector |
typedef Vector< Real > | V |
typedef vector::size_type | uint |
Private Member Functions | |
template<class VectorType > | |
ROL::Ptr< const vector > | getVector (const V &x) |
template<class VectorType > | |
ROL::Ptr< vector > | getVector (V &x) |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Objective< Real > | |
const std::vector< Real > | getParameter (void) const |
Objective function: f(x,y) = x^2 + y^2.
Definition at line 34 of file ROL_ParaboloidCircle.hpp.
|
private |
Definition at line 36 of file ROL_ParaboloidCircle.hpp.
|
private |
Definition at line 37 of file ROL_ParaboloidCircle.hpp.
|
private |
Definition at line 39 of file ROL_ParaboloidCircle.hpp.
|
inline |
Definition at line 57 of file ROL_ParaboloidCircle.hpp.
|
inlineprivate |
Definition at line 45 of file ROL_ParaboloidCircle.hpp.
Referenced by ROL::ZOO::Objective_ParaboloidCircle< Real, XPrim, XDual >::getVector().
|
inlineprivate |
Definition at line 51 of file ROL_ParaboloidCircle.hpp.
References ROL::ZOO::Objective_ParaboloidCircle< Real, XPrim, XDual >::getVector().
|
inlinevirtual |
Compute value.
This function returns the objective function value.
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
Implements ROL::Objective< Real >.
Definition at line 59 of file ROL_ParaboloidCircle.hpp.
|
inlinevirtual |
Compute gradient.
This function returns the objective function gradient.
[out] | g | is the gradient. |
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
The default implementation is a finite-difference approximation based on the function value. This requires the definition of a basis \(\{\phi_i\}\) for the optimization vectors x and the definition of a basis \(\{\psi_j\}\) for the dual optimization vectors (gradient vectors g). The bases must be related through the Riesz map, i.e., \( R \{\phi_i\} = \{\psi_j\}\), and this must be reflected in the implementation of the ROL::Vector::dual() method.
Reimplemented from ROL::Objective< Real >.
Definition at line 76 of file ROL_ParaboloidCircle.hpp.
|
inlinevirtual |
Apply Hessian approximation to vector.
This function applies the Hessian of the objective function to the vector \(v\).
[out] | hv | is the the action of the Hessian on \(v\). |
[in] | v | is the direction vector. |
[in] | x | is the current iterate. |
[in] | tol | is a tolerance for inexact objective function computation. |
Reimplemented from ROL::Objective< Real >.
Definition at line 99 of file ROL_ParaboloidCircle.hpp.