ROL
Public Member Functions | Private Member Functions | Private Attributes | List of all members
ROL::ConstraintFromObjective< Real > Class Template Reference

Creates a constraint from an objective function and a offset value. More...

#include <ROL_ConstraintFromObjective.hpp>

+ Inheritance diagram for ROL::ConstraintFromObjective< Real >:

Public Member Functions

 ConstraintFromObjective (const Ptr< Objective< Real >> &obj, const Real offset=0)
 
const Ptr< Objective< Real > > getObjective (void) const
 
void setParameter (const std::vector< Real > &param) override
 
void update (const Vector< Real > &x, UpdateType type, int iter=-1) override
 Update constraint function. More...
 
void update (const Vector< Real > &x, bool flag=true, int iter=-1) override
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (Vector< Real > &c, const Vector< Real > &x, Real &tol) override
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 

Private Member Functions

Real getValue (const Vector< Real > &x)
 
void setValue (Vector< Real > &x, Real val)
 

Private Attributes

const Ptr< Objective< Real > > obj_
 
Ptr< Vector< Real > > dualVector_
 
const Real offset_
 
bool isDualInitialized_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<typename Real>
class ROL::ConstraintFromObjective< Real >

Creates a constraint from an objective function and a offset value.

Example: Suppose we have an objective function f(x) and we wish to impose, e.g., a condition f(x)-offset = 0, then this class creates the scalar constraint c(x) = f(x)-offset

Definition at line 30 of file ROL_ConstraintFromObjective.hpp.

Constructor & Destructor Documentation

template<typename Real >
ROL::ConstraintFromObjective< Real >::ConstraintFromObjective ( const Ptr< Objective< Real >> &  obj,
const Real  offset = 0 
)

Definition at line 16 of file ROL_ConstraintFromObjective_Def.hpp.

Member Function Documentation

template<typename Real >
const Ptr< Objective< Real > > ROL::ConstraintFromObjective< Real >::getObjective ( void  ) const

Definition at line 20 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::setParameter ( const std::vector< Real > &  param)
overridevirtual

Reimplemented from ROL::Constraint< Real >.

Definition at line 23 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_, and ROL::Constraint< Real >::setParameter().

template<typename Real >
void ROL::ConstraintFromObjective< Real >::update ( const Vector< Real > &  x,
UpdateType  type,
int  iter = -1 
)
overridevirtual

Update constraint function.

This function updates the constraint function at new iterations.

Parameters
[in]xis the new iterate.
[in]typeis the type of update requested.
[in]iteris the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 29 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
overridevirtual

Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 34 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::value ( Vector< Real > &  c,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 39 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::applyJacobian ( Vector< Real > &  jv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#91, where

\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 44 of file ROL_ConstraintFromObjective_Def.hpp.

References ROL::Vector< Real >::apply(), ROL::Vector< Real >::clone(), ROL::Vector< Real >::dual(), and obj_.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::applyAdjointJacobian ( Vector< Real > &  ajv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

  @param[out]      ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector
  @param[in]       v   is a dual constraint-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#95, where

\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 55 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_, and ROL::Vector< Real >::scale().

template<typename Real >
void ROL::ConstraintFromObjective< Real >::applyAdjointHessian ( Vector< Real > &  ahuv,
const Vector< Real > &  u,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

  @param[out]      ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at @b x to vector @b u in direction @b v; a dual optimization-space vector
  @param[in]       u    is the direction vector; a dual constraint-space vector
  @param[in]       v    is an optimization-space vector
  @param[in]       x    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#100, where

\(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.


Reimplemented from ROL::Constraint< Real >.

Definition at line 61 of file ROL_ConstraintFromObjective_Def.hpp.

References obj_, and ROL::Vector< Real >::scale().

template<typename Real >
Real ROL::ConstraintFromObjective< Real >::getValue ( const Vector< Real > &  x)
private

Definition at line 67 of file ROL_ConstraintFromObjective_Def.hpp.

template<typename Real >
void ROL::ConstraintFromObjective< Real >::setValue ( Vector< Real > &  x,
Real  val 
)
private

Definition at line 72 of file ROL_ConstraintFromObjective_Def.hpp.

Member Data Documentation

template<typename Real >
const Ptr<Objective<Real> > ROL::ConstraintFromObjective< Real >::obj_
private

Definition at line 32 of file ROL_ConstraintFromObjective.hpp.

template<typename Real >
Ptr<Vector<Real> > ROL::ConstraintFromObjective< Real >::dualVector_
private

Definition at line 33 of file ROL_ConstraintFromObjective.hpp.

template<typename Real >
const Real ROL::ConstraintFromObjective< Real >::offset_
private

Definition at line 34 of file ROL_ConstraintFromObjective.hpp.

template<typename Real >
bool ROL::ConstraintFromObjective< Real >::isDualInitialized_
private

Definition at line 35 of file ROL_ConstraintFromObjective.hpp.


The documentation for this class was generated from the following files: