ROL
|
Defines a constaint formed through function composition \(c(x)=c_o(c_i(x))\). More...
#include <ROL_ChainRuleConstraint.hpp>
Public Member Functions | |
ChainRuleConstraint (const Ptr< Constraint< Real >> &outer_con, const Ptr< Constraint< Real >> &inner_con, const Vector< Real > &x, const Vector< Real > &lag_inner) | |
virtual | ~ChainRuleConstraint ()=default |
virtual void | update (const Vector< Real > &x, UpdateType type, int iter=-1) |
Update constraint function. More... | |
virtual void | update (const Vector< Real > &x, bool flag, int iter=-1) |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More... | |
virtual void | value (Vector< Real > &c, const Vector< Real > &x, Real &tol) override |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More... | |
virtual void | applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More... | |
virtual void | applyAdjointJacobian (Vector< Real > &ajl, const Vector< Real > &l, const Vector< Real > &x, Real &tol) override |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahlv, const Vector< Real > &l, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual void | setParameter (const std::vector< Real > ¶m) |
Private Attributes | |
const Ptr< Constraint< Real > > | outer_con_ |
const Ptr< Constraint< Real > > | inner_con_ |
Ptr< Vector< Real > > | y_ |
Ptr< Vector< Real > > | Jiv_ |
Ptr< Vector< Real > > | aJol_ |
Ptr< Vector< Real > > | HiaJol_ |
Ptr< Vector< Real > > | HolJiv_ |
Real | tol_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Defines a constaint formed through function composition \(c(x)=c_o(c_i(x))\).
\(c_i\mathcal{X}\to\mathcal{Y}\) and \(c_o:\mathcal{Y}\to\mathcal{Z}\)
It is assumed that both $c_i$ and $c_o$ both of ROL::Constraint type, are
Definition at line 30 of file ROL_ChainRuleConstraint.hpp.
|
inline |
Definition at line 33 of file ROL_ChainRuleConstraint.hpp.
|
virtualdefault |
|
inlinevirtual |
Update constraint function.
This function updates the constraint function at new iterations.
[in] | x | is the new iterate. |
[in] | type | is the type of update requested. |
[in] | iter | is the outer algorithm iterations count. |
Reimplemented from ROL::Constraint< Real >.
Definition at line 48 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::outer_con_, ROL::ChainRuleConstraint< Real >::tol_, and ROL::ChainRuleConstraint< Real >::y_.
|
inlinevirtual |
Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
Reimplemented from ROL::Constraint< Real >.
Definition at line 56 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::outer_con_, ROL::ChainRuleConstraint< Real >::tol_, and ROL::ChainRuleConstraint< Real >::y_.
|
inlineoverridevirtual |
Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
[out] | c | is the result of evaluating the constraint operator at x; a constraint-space vector |
[in] | x | is the constraint argument; an optimization-space vector |
[in,out] | tol | is a tolerance for inexact evaluations; currently unused |
On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).
Implements ROL::Constraint< Real >.
Definition at line 64 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::outer_con_, and ROL::ChainRuleConstraint< Real >::y_.
|
inlineoverridevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#91, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 71 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::Jiv_, ROL::ChainRuleConstraint< Real >::outer_con_, and ROL::ChainRuleConstraint< Real >::y_.
|
inlineoverridevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector @param[in] v is a dual constraint-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#95, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation.
Reimplemented from ROL::Constraint< Real >.
Definition at line 80 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::aJol_, ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::outer_con_, and ROL::ChainRuleConstraint< Real >::y_.
|
inlineoverridevirtual |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).
@param[out] ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at @b x to vector @b u in direction @b v; a dual optimization-space vector @param[in] u is the direction vector; a dual constraint-space vector @param[in] v is an optimization-space vector @param[in] x is the constraint argument; an optimization-space vector @param[in,out] tol is a tolerance for inexact evaluations; currently unused On return, \form#100, where
\(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).
The default implementation is a finite-difference approximation based on the adjoint Jacobian.
Reimplemented from ROL::Constraint< Real >.
Definition at line 89 of file ROL_ChainRuleConstraint.hpp.
References ROL::ChainRuleConstraint< Real >::aJol_, ROL::ChainRuleConstraint< Real >::HiaJol_, ROL::ChainRuleConstraint< Real >::HolJiv_, ROL::ChainRuleConstraint< Real >::inner_con_, ROL::ChainRuleConstraint< Real >::Jiv_, ROL::ChainRuleConstraint< Real >::outer_con_, ROL::Vector< Real >::plus(), and ROL::ChainRuleConstraint< Real >::y_.
|
private |
Definition at line 105 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian(), ROL::ChainRuleConstraint< Real >::applyAdjointJacobian(), ROL::ChainRuleConstraint< Real >::applyJacobian(), ROL::ChainRuleConstraint< Real >::update(), and ROL::ChainRuleConstraint< Real >::value().
|
private |
Definition at line 105 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian(), ROL::ChainRuleConstraint< Real >::applyAdjointJacobian(), ROL::ChainRuleConstraint< Real >::applyJacobian(), ROL::ChainRuleConstraint< Real >::update(), and ROL::ChainRuleConstraint< Real >::value().
|
private |
Definition at line 107 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian(), ROL::ChainRuleConstraint< Real >::applyAdjointJacobian(), ROL::ChainRuleConstraint< Real >::applyJacobian(), ROL::ChainRuleConstraint< Real >::update(), and ROL::ChainRuleConstraint< Real >::value().
|
private |
Definition at line 108 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian(), and ROL::ChainRuleConstraint< Real >::applyJacobian().
|
private |
Definition at line 109 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian(), and ROL::ChainRuleConstraint< Real >::applyAdjointJacobian().
|
private |
Definition at line 110 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian().
|
private |
Definition at line 111 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::applyAdjointHessian().
|
private |
Definition at line 112 of file ROL_ChainRuleConstraint.hpp.
Referenced by ROL::ChainRuleConstraint< Real >::update().