ROL
Public Member Functions | Private Member Functions | Private Attributes | List of all members
ROL::AffineTransformConstraint< Real > Class Template Reference

Compose a constraint operator with an affine transformation, i.e.,. More...

#include <ROL_AffineTransformConstraint.hpp>

+ Inheritance diagram for ROL::AffineTransformConstraint< Real >:

Public Member Functions

virtual ~AffineTransformConstraint ()
 
 AffineTransformConstraint (const Ptr< Constraint< Real >> &con, const Ptr< Constraint< Real >> &acon, const Vector< Real > &range, const Ptr< VectorController< Real >> &storage=nullPtr)
 
 AffineTransformConstraint (const Ptr< Constraint< Real >> &con, const Ptr< LinearConstraint< Real >> &acon, const Ptr< VectorController< Real >> &storage=nullPtr)
 
 AffineTransformConstraint (const Ptr< Constraint< Real >> &con, const Ptr< const LinearOperator< Real >> &A, const Ptr< const Vector< Real >> &b, const Ptr< VectorController< Real >> &storage=nullPtr)
 
void update (const Vector< Real > &x, UpdateType type, int iter=-1) override
 Update constraint function. More...
 
void update (const Vector< Real > &x, bool flag=true, int iter=-1) override
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (Vector< Real > &c, const Vector< Real > &x, Real &tol) override
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Member Functions

Ptr< const Vector< Real > > transform (const Vector< Real > &x)
 

Private Attributes

const Ptr< Constraint< Real > > con_
 
const Ptr< Constraint< Real > > acon_
 
Ptr< VectorController< Real > > storage_
 
Ptr< Vector< Real > > primal_
 
Ptr< Vector< Real > > dual_
 
Ptr< Vector< Real > > Av_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class ROL::AffineTransformConstraint< Real >

Compose a constraint operator with an affine transformation, i.e.,.

\[ C(x) = c(Ax+b). \]

Definition at line 28 of file ROL_AffineTransformConstraint.hpp.

Constructor & Destructor Documentation

template<class Real >
virtual ROL::AffineTransformConstraint< Real >::~AffineTransformConstraint ( )
inlinevirtual

Definition at line 37 of file ROL_AffineTransformConstraint.hpp.

template<typename Real >
ROL::AffineTransformConstraint< Real >::AffineTransformConstraint ( const Ptr< Constraint< Real >> &  con,
const Ptr< Constraint< Real >> &  acon,
const Vector< Real > &  range,
const Ptr< VectorController< Real >> &  storage = nullPtr 
)
template<typename Real >
ROL::AffineTransformConstraint< Real >::AffineTransformConstraint ( const Ptr< Constraint< Real >> &  con,
const Ptr< LinearConstraint< Real >> &  acon,
const Ptr< VectorController< Real >> &  storage = nullPtr 
)
template<typename Real >
ROL::AffineTransformConstraint< Real >::AffineTransformConstraint ( const Ptr< Constraint< Real >> &  con,
const Ptr< const LinearOperator< Real >> &  A,
const Ptr< const Vector< Real >> &  b,
const Ptr< VectorController< Real >> &  storage = nullPtr 
)

Member Function Documentation

template<typename Real >
void ROL::AffineTransformConstraint< Real >::update ( const Vector< Real > &  x,
UpdateType  type,
int  iter = -1 
)
overridevirtual

Update constraint function.

This function updates the constraint function at new iterations.

Parameters
[in]xis the new iterate.
[in]typeis the type of update requested.
[in]iteris the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 51 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
void ROL::AffineTransformConstraint< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
overridevirtual

Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 58 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
void ROL::AffineTransformConstraint< Real >::value ( Vector< Real > &  c,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 65 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
void ROL::AffineTransformConstraint< Real >::applyJacobian ( Vector< Real > &  jv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#91, where

\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 70 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
void ROL::AffineTransformConstraint< Real >::applyAdjointJacobian ( Vector< Real > &  ajv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

  @param[out]      ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector
  @param[in]       v   is a dual constraint-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#95, where

\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 76 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
void ROL::AffineTransformConstraint< Real >::applyAdjointHessian ( Vector< Real > &  ahuv,
const Vector< Real > &  u,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

  @param[out]      ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at @b x to vector @b u in direction @b v; a dual optimization-space vector
  @param[in]       u    is the direction vector; a dual constraint-space vector
  @param[in]       v    is an optimization-space vector
  @param[in]       x    is the constraint argument; an optimization-space vector
  @param[in,out]   tol  is a tolerance for inexact evaluations; currently unused

  On return, \form#100, where

\(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.


Reimplemented from ROL::Constraint< Real >.

Definition at line 82 of file ROL_AffineTransformConstraint_Def.hpp.

template<typename Real >
Ptr< const Vector< Real > > ROL::AffineTransformConstraint< Real >::transform ( const Vector< Real > &  x)
private

Definition at line 89 of file ROL_AffineTransformConstraint_Def.hpp.

Member Data Documentation

template<class Real >
const Ptr<Constraint<Real> > ROL::AffineTransformConstraint< Real >::con_
private

Definition at line 30 of file ROL_AffineTransformConstraint.hpp.

template<class Real >
const Ptr<Constraint<Real> > ROL::AffineTransformConstraint< Real >::acon_
private

Definition at line 31 of file ROL_AffineTransformConstraint.hpp.

template<class Real >
Ptr<VectorController<Real> > ROL::AffineTransformConstraint< Real >::storage_
private
template<class Real >
Ptr<Vector<Real> > ROL::AffineTransformConstraint< Real >::primal_
private
template<class Real >
Ptr<Vector<Real> > ROL::AffineTransformConstraint< Real >::dual_
private
template<class Real >
Ptr<Vector<Real> > ROL::AffineTransformConstraint< Real >::Av_
private

The documentation for this class was generated from the following files: